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CHAPTER FIVE (Part c). 

CONCERNING THE CURVILINEAR MOTION OF FREE POINTS 
 ACTED ON BY ABSOLUTE FORCES OF ANY KIND. 

.  
PROPOSITION 86.  

 
PROBLEM.  

707.  To find the law of the force continually pulling downwards which can be 
constructed along the lines MP (Fig. 62) parallel to each other, in order that the body 
moves along a given curve AM,  and to determine the speed of the body at individual 
points M. [p. 292] 
   
 

SOLUTION. 
 The normal AP is drawn through the line MP,  AP is 
called x, and PM  y. The curve  AM = s and the radius os 

osculation MR at M = r, then ddx
dsdyr =  with ds taken as 

constant. Again the speed of the body at M corresponds to 
the height v, and the body force at M pulling along MP is 
put as P. From these established, these two equations are 
obtained :  Pdydv −=  and vdsdxPr 2=  (557), from 
which, if v is known, then P is itself immediately apparent. 
Therefore P is eliminated, and v is to be found from this 

equation : vdsdyrdxdv 2−= , which with r replaced by its value ddx
dsdy , becomes this 

equation:  dx
ddx

v
dv 2=− , which integrated gives: 2

2

ds
dxlvlCl =− . Moreover, the speed is 

known at the point A,  and that corresponds to the height [v = ] c, and if the cosine of the 
angle MAP or the value of ds

dx , with the point M falling at A, is equal to  λ. Therefore this 

equation hence arises  : λlclCl 2+= and consequently 

2

22

dx
cdsv λ= ,  

hence the speed of the body becomes known at the individual points  M.  
 Moreover the force P acting can be found to be :  

 
 
Or,  if dx taken as constant, then in which case dxddy

dsr −=
3

, and the force is   
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Finally the time, in which the arc AM is traversed, is equal to :  
 

 
 
Q.E.I. [Note that ds taken as constant enables us to write 

).ds/dxlog(ds/dx
)ds/dx(d

dx
ddx == ∫∫  Also recall that 

.r ddydx
ds

dx)dx/ddy(
ds

"y
)'y( / 3

32

32321 −=−=−= + ] 

 
Corollary 1.  

708. Therefore whatever the force shall be acting, the body always progresses 
horizontally uniformly on account of the time to travel along AM to be proportional to  
AP itself, that has been observed above (579). [p. 293] 
 

Corollary 2.  
709. If a perpendicular is sent from R to the line MP produced RS, and from S another 
perpendicular ST is sent to MR , and finally a third perpendicular TV is sent from T to MS, 
then 3

3

ds
rdxMV = . Whereby the force P acting has the ratio to the force of gravity [which 

equals one] as c22λ  to MV, or P is inversely as MV.  
[For there is a set of nested similar triangles, where dx/ds = cosθ = cos (TSR). Thus, 

.cosMRcosMScosMTMV θθθ 32 === ] 
  

Corollary 3.  
710. If the angle at A is right, then  λ = 0. In which case the body must ascent straight up.  
But only if  λ is made indefinitely small and c infinitely large, in order that c22λ has a 
finite value, is the body able to move by making use of this curve.   
 

Example 1.  
711. Let the curve AM be a circle, the diameter of which is put on the axis AP, and the 
radius is equal to a. Thus r = a and .y:adx:ds =  On this account the force P becomes :   

 

2

22

3

22
 and 2

y
ca

y
ca vP λλ ==  

Therefore the force pulling downwards on M varies inversely as the cube of the upright 
MP and the speed varies inversely as this applied line itself [i. e. the y-coordinate]. Truly 
the height generating the speed at the maximum point of the periphery, where it becomes 
y = a, is equal to .c2λ  
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Example 2.  
712. Let the curve AMC (Fig. 63) be a parabola, the 
axis of which CB is vertical and the parameter is equal 
to a. The horizontal line MQ is drawn and on putting 
CQ = t and MQ = z, then .atz =2  Truly 
also dzdx −= and dtdy −=  [p. 294] and as 

before, ds)dzdt( =+ 22 . On account of which, 

2

2

2

22 2 and 
dz

cddt
dz
cds Pv λλ == . Let the speed at the 

maximum point C correspond to the height b, and this is given, since dzds =  at C, 
by bc =2λ , and thus 22

2 2 and 
dz
bddt

dz
bds Pv == , with dz taken as constant. From the equation 

atz =2 we have a
zdzdt 2=  and a

dzddt
22=  and )(dzds

a
z
2

2422 1+= . 

Consequently  there is found :  

 
 
and a

bP 4= .  
From which it is apparent that the force pulling downwards is constant, which is effective 
as the body progresses along the parabola. Whereby therefore, if this force is taken as the 
force of gravity equal to 1, it gives rise to 4

ab = , equal to the distance of the focus from 
the vertex.  Which are in agreement with what was found above (564 and onwards.)  
[This corresponds to our normal presentation of the parabola, axy 42 = , where the focus 
lies on the semi-latus rectum AB, and CB is taken as equal to a; if here the vertex to 
focus distance CB is equal to b, while Euler's a is equal to the length of the latus rectum, 
2AB. ] 

Example 3.  
 

713. Let MAN (Fig. 64) be a hyperbola with 
centre C described having the vertical axis CP. 
The semi-transverse axis AC = a and the semi-
conjugate axis  = e and CP = t ,  PM = z,  and as 
above the height corresponding to the speed that 
the body has at A is equal to b, is as we have done 
for the above parabola :  22

2 2 and 
dz
bddt

dz
bds Pv ==  

with dz taken as constant. Truly from the nature 
of the hyperbola, we have 222222 teeaza +−= , 
from which there arises on differentiation :   
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te
zdzadt 2

2
=  and [on differentiating and substituting these last two equations : ] 

 
Consequently, the force is given by : 32

42
te
baP = , or the force pulling the body downwards 

everywhere at M  is inversely proportional to the cube of the distance ML of the point M 
from the horizontal LC drawn through the centre C. Again we have :   

 
And we have besides :  
 

 
 

PROPOSITION 87. [p. 295] 
 

PROBLEM.  
714.  For the given curve AMB (Fig. 65) together with the centre of attraction C, to find 
the law of the centripetal force, which must act, in order that the body is free to move 
along that curve, and to find the speed of the body at any position M.  
    

SOLUTION. 
 Since the curve AMB is given together with the point C, 
the equation is sought between the distance MC of any 
point of the curve M from the centre C and the  
perpendicular CT, that is sent from C to the tangent MT. 
Whereby with CM = y and CT = p the equation between  
p and y can be obtained. Now let the speed of the body at 
the point A correspond to the height c and the 
perpendicular from C sent to the tangent at A be equal to 

h. Truly of these unknown quantities, let the height corresponding to the speed at  M be 
equal to v and the centripetal force at M is equal to P. With these put in place, we have   

2

2

p
chv =  (589) and 

dyp
dpchP 3

22=  (592). Or with the radius of osculation at  M put equal to r 

then we have 
rp
ychP 3

22= (592). Q.E.I. 

 
Corollary 1.  

715. Also the time, in which the body completes some arc AM, is equal to
ch

ACM2 , or is 

proportional to the area ACM (588).  
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Corollary 2.  
716. Since 2ch is a constant quantity [i. e. the 
angular momentum of the unit mass], then 
the centripetal force at some point M is 

proportional to this value [p. 296] 
dyp

dp
3 or to 

this :  
rp

y
3 . Therefore the speed v is 

proportional to the reciprocal of the 
perpendicular CT sent to the tangent MT 
(589).  
[You may wish to remind yourself about r 
using the sketch supplied here, as in Ch. 5 
Part a :  note that Mmr and MTT' are 
incremental triangles, and hence the lines 
TC, MR, and mR are treated as parallel. We 
hence have the similar triangles Mmr and 
CMT : giving .p/MTdx/dyy/MTds/dy ==  and  Likewise, triangles MTT' and RmM 
give : ;r/dsMT/dp = hence. .dp/ydydp/ds.MTr ==  Note that the first elemental 
triangle diminishes to a point, keeping its angles intact, while the second diminishes to a 
finite line segment which stays constant.] 
 

Example 1.  
717. Let the given curve be an ellipse and the centre of force C placed in the centre of the 
ellipse. The semi-transverse axis is called a and the semi-conjugate axis b; from the 
nature of the ellipse it follows that 

)yba(
abp

222 −+
= . Therefore we have : 

2
3

222 )yba(

abydydp
−+

=  and thus 223 ba
y

dyp
dp = . On this account the centripetal force produced 

is given by :  

22

22
ba

ychP = ,  

which is therefore proportional to the distance from the centre of the ellipse.  
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Example 2.  

718. Let the given curve again be an ellipse, but with the centre of force C placed in the 
other focus. The transverse axis of this is put equal to A and the latus rectum equal to L, 

and from the nature of the ellipse we find that yA
ALypp −=4 . Hence of differentiating, we 

have 2

2

8
)yA(

LdyApdp
−

= . Truly since 2

222416
)yA(

yLAp
−

= , then 232 Ly
dy

p
dp =  and consequently  

2

24
Ly
chP = .  

Therefore the centre of force is inversely proportional to the square of the distance of the 
body from the centre of force C.  

 
Example 3.  

719. Let the curve be a logarithmic spiral and the centre of force C is placed at the centre 

of this; hence 323
1 and 
yndyp

dpnyp == , and thus 32

22
yn

chP = .  

Whereby the centripetal force varies inversely as the cube of the distance of the body 
from the centre. [p. 297] 

 
PROPOSITION 88.  

 
THEOREM.  

720.  The force pulling towards C (Fig. 66), that is put in place in order that the body 
moves along the given curve AM, has the ratio to the force pulling towards another 
centre of force c, which is put in place in order that the body can move around the same 
curve with the same periodic time, as the cube of the line cV from c to the tangent TM 
drawn parallel to the line CM, is  to the volume formed from the line cM multiplied by the 
square of the line CM.  
    

DEMONSTRATION. 
 Let the speed of the body at a given point A, with the body 
rotating around the centre of force C, correspond to the height 
c and the perpendicular sent from C to the tangent at A is equal 
to h. But when the body is moving around the centre of force  
c, let the speed at A correspond to the height γ and the 
perpendicular sent from the centre c to the tangent at A is 
equal to θ. Moreover since the periodic times around each 
centre of force are equal, then γθ=ch or 22 γθ=ch (715). 
From the centre C and from c perpendiculars CT and ct are 
again sent to the tangent at M, and the radius of osculation at 

M is equal to r. With these in place, the centripetal force at M pulling towards C, that we 
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call P, is equal to 3

22
CT.r

CM.ch  and the centripetal force at M pulling towards the centre c, that 

we call Π, is equal to 3

22
ct.r

cM.γθ  (714). On account of this, since 22 γθ=ch  then  

 
Moreover with the line drawn cV parallel to the line CM, as triangles TCM and tcV are 
similar, we have cV:CMct:CT = . Hence because of this,   

 
Q.E.D. [p. 298] 
 

Corollary 1.  
721. The speed of the body at the same point M, while it is being attracted to the centre of 
forces C, to the  speed, while it is being attracted to the other centre c, vary inversely as  
CT to ct or directly as cV to CM. This is a consequence of 22 γθ=ch .  
 

Corollary 2.  
722. If the periodic times are not equal, but are to each other as T to t, then 

γθ
11 :t:T

ch
=  or 2222 T:t:ch =γθ . Consequently it follows that the ratio of the 

forces :  
 

Or the forces P and Π are in the ratio composed from the ratio assigned for equal periods 
in the theorem, and inversely as the square of the periodic times.  
 

Corollary 3.  
723. In this same case, in which the periodic times are unequal, the speed of the body at 
M, with the centre of forces placed at C, to the speed at M, with the centre of forces 
placed at c, are in the reciprocal ration composed from the ratio of the perpendiculars  CT 
and ct and in the ratio of the period times T : t.  

 
Scholium 1.  

724. Newton deduced this Proposition in Book I, prop. VII, coroll. 3 of the Princ., and 
that was used to find the centripetal force acting at some point, from the known force 
acting at some other centre. Here we show the use of this in the following single example.  
[p. 299] 
 

Example.  
725. Let the given curve be the circle AMc (Fig. 67), and 
one centre of forces is put at the centre of the circle C. 
Therefore the force P pulling everywhere towards C is 
constant and is called g. From this is sought the force 
acting towards a centre of forces c situated on the 
periphery and making Π, in order that the body is moving 
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around the circle in the same periodic time.  Therefore the perpendicular cV is sent from c 
to the tangent MV, which from the nature of the circle is likewise parallel to the line CM. 
On account of which, 23 CM.cM:cV:g =Π and thus  

 
The line AM is drawn, the triangles cVM and cMA are similar, as the angles cMV = 
cAM and since cA:cMcM:cV = . Therefore CM

cMcV 2
2

= , from which the force becomes 

:  

 
Therefore this force Π varies inversely as the fifth power of the distance  Mc of the body 
from the centre of forces c, now as was found above (692).  

 
Corollary 4.  

726. Let the speed of the body rotating on the periphery of the circle around the centre C 
correspond to the height c and the speed of the body at M rotating around the centre of 
forces c correspond to the height v. Hence :   

 

(721)  or 4

44
cM
CM.cv = .  

On account of which the speed of the body rotating around the centre c is everywhere 
reciprocally as the square of the distance of that from c. [p. 300] [On account of cons. of 
ang. mom.] 
 

Corollary 5.  
727. For, with the centre of force present at the centre C of the circle, then we have 

==== rpyh  radius CM, and CM
cgP 2==  (592). On this account, [from above] by 

putting 5

5

5

5

5

5

168
 and 

CM
f

CM
f

cM
f cg, ===Π . Thus 4

5

4
 

cM
fv = .  

 
Scholium 2.  

728. In these propositions we have put in place the curve that the body describes, which 
is given completely with the equation for that curve. But there are also the cases, in which 
the curve itself is not given that describes the motion, but rather the motion itself must 
first be found by examining certain conditions, so that the law of the centripetal force can 
then be found.  And here these propositions are concerned, and which have been treated 
everywhere, with the motion of bodies in moving orbits, concerning which therefore we 
treat in the following proposition. [We note that the fifth power situation with the centre 
of force lying on the orbit would not be a physically realizable situation.] 
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PROPOSITION 89.  
 

PROBLEM.  
729.  If the orbit ( A)(M)(B) (Fig. 65) is revolving around some centre of forces C, it is 
required to define the centripetal force always pulling towards C, which is put in place, 
in order that the body is moving in this moveable orbit.   
    

SOLUTION. 
 While the orbit comes from the 
situation (A)(M)(B) to the situation 
AMB, the body meanwhile is put to 
have come from (A) to M, thus as the 
body in the orbit meanwhile describes 
the angle (A)C(M) = ACM, but actually 
the angle (A)CM = (A)C(M) + (A)CA 
[p. 301] has been described. Initially 
with the body present at (A),  the true  
speed at this point is not that which it 
has in the orbit, but corresponds to the 
altitude c; and the line C(A) is 
perpendicular both to the orbit as well 
as to the true curve on which the body 
moves, and which is equal to a. Again 
the speed of the body at M , as much as 
it is moving in the orbit, corresponds to 
the height  u and the true speed of the 
body at M corresponds to the height v.  
But the angular speed in the orbit to the true angular speed around C, while the body is 
moving at M, is as 1 to w. Therefore in the orbit considered stationary, the element 
(M)(m) is described with the speed u . The distance C(M) is put equal to CM = y and 
the perpendicular pCT)T(C ==  is sent from C to the tangent to the orbit at (M) or M, 
and an equation exists between p and y on account of the given orbit. Now while the body 
describes the element Mm in the orbit,  the orbit itself progresses around C with the 
orbital angular motion through the angle μmC , and on this account the body is found, 
not indeed at m, but instead at μ, by taking CmC =μ , and meanwhile the element Mμ is 
agreed to have been described by that speed which corresponds to the height v. Hence we 
have :   

 
and with the small [circular] arc Mv described with centre C (on account of the given 
angular motions about C in the orbit and in fact in the ratio w:1  ) for which the ratio is : 

 
[Thus, the first proportionality describes the ratio of the displacements of the body in the 
orbit reference frame to the absolute reference frame in which the orbit itself rotates; the 
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second proportionality considers the corresponding angular speed by taking the 
corresponding arcs of a circle Mn and Mv, the first relative to the orbit reference frame 
and the second relative to the absolute reference frame .] 

Truly, with the tangent put in place : q)py(MT =−= 22 , q
ydyMm =  and q

pdyMn =  

[In a small displacement along the orbital curve, CM corresponds to y and Cm 
corresponds to y + dy; hence mn is equal to dy in the elemental triangle mMn.  The 
curvature remains the same on Mm, and the centre of curvature lies along the normal to 
the curve and the tangent at M, i. e. on a line parallel to CT (but not passing through C 
unless the orbit is  a circular one); hence, the angle TCM is a measure of the angle 
between the direction of MC or y and the direction of the normal to the curve at M, which 
stays constant along Mm. Hence the angle Mmn is the complement of this angle, and 
hence the angle mMn is equal to the angle TCM. It follows that the triangles Mnm and 
MTC are similar; hence the ratio dy/Mm = TM/MC = q/y  follows. Meanwhile, the arc Mn 
is traced out by the same elemental angle MCn or MCm, for which the constant radius is 
y, and the arc length Mn is to dy (the cotangent of the angle mMn or MCT) as p is to q as 
above. We have met this result several times already, the last occurrence in (716) above.] 

On which account we have : 
uq

vydyM =μ  and q
wpdyMv =  

[The multiples of the distance and angle gone through in the same time on the true curve. 

Hence, 2

2

2

2
1or  222

dy
M

dy
MMM μνμννμ =+=+ , leading to the next result. ] 

From which as dymn ==μν  there is produced 2

2

2

22

1
uq
vy

q
pw =+ or  

 
Because Mμ is the element [p. 302] of the true curve that the body describes, the 
perpendicular ΘC  is sent from C to this element produced, and the ratio becomes [on 
using arguments similar to the above for the equality of the angles] :  

Θ= C:CMM:M νμ , thus we have :   

 
Truly from this perpendicular,  the true speed of the body is known; for 22

2

upw
cvav =  (589) 

[Recall that since for any curve, 2

2

p
chv = , and that the speed p

chv = ; here Θ= Cp , and 

thus 22

2

upw
cvav =  and v cancels out.] 

 
With these values of u and v put in place, then  

 
which for the sake of brevity we call π. Moreover from this known value π the centripetal 
force P can itself be found, which comes about, in order that the body can move in this 
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given orbit,  and that the orbit in turn can be moved in this way. For it is given by 

dy
cdaP 3

22
π

π=  (592) [De Moivre's Theorem]. But since 222

2222
pwq

ypw
+

=π , then  

[as q2 + p2 = y2 : ] 

 
 and thus 

 
or 

 
Consequently we have :   

 
Q.E.I.  
 

Corollary 1.  
730. With the radius put equal to 1 then qy

pdy)w(
CM
m 1−=μ  is the element of the angle 

(A)CA, that the orbit has completed, while the body travels through the arc (A)(M). For 

this reason the angle (A)CA= ∫ −
qy

pdy)w( 1 . And 11 :)w( −  is as the  angular speed of the 

orbital to the angular speed of the body, while it is at M in its orbit.    
 

Corollary 2.  
731. The speed of the body in the orbit, which is as u , is inversely proportional to wp 
itself. Therefore, unless w is constant, this cannot happen, as the body in the stationary 
orbit may be moved by this force in this way, attracted to the centre C. [p. 303] [One 
would need to add another force as a cause for w to change.] 
 

Corollary 3.  
732. Therefore with w constant, i. e. with the ratio of the angular motion of the body to 
the angular motion in the orbit always the same, also the speed of the body in the orbit  

u  is inversely proportional to the perpendicular C(T) to the tangent. And the centripetal 
force attracting and being effective towards C , because the body is moving in a 

stationary orbit, is equal to 
dypw

cdpa
32

22 . For the speed with respect to the orbit, that the body 

has at (A), corresponds to the height γ , is w:c: 1=γ  (by hypothesis) and γ2wc = , 
from which the centripetal force acting towards C, as the body in the stationary orbit is 

moved , is equal to 
dyp

dpa
3

22 γ , as indeed has been found from the above treatment (591).  
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Corollary 4.  
733. Therefore the angle (A)CA in this hypothesis, where w is put constant, which is 
completed by the orbit, while the body traverses the arc (A)(M), is equal to  
 

 
Hence for one complete revolution of the body in the orbit, the orbit itself rotates about C 
by the angle 3601).w( −  degrees.  
 

Corollary 5.  
734. Moreover the force, which it effects, as the body moving in this orbit 
proportionately to the angular motion in the orbit itself, is [p. 304] 

 
or is equal to 

 
 

Whereby the difference between the centripetal force for the stationary orbit and the force 
for the moving orbit is the latter part which is inversely proportional to the cube of the 
distance of the body from the centre of the forces C.  

 
Corollary 6.  

735. If we put w = 1, then 01=−w  and then there is no motion of the orbit, in which 

case also the centripetal force is equal to 
dyp

dpa
3

22 γ  with the other term vanishing. Likewise 

it comes about, if 21or  1 −=−−= ww , in which case the orbit in the preceding moves 
with twice the speed that the body itself moves in the orbit. [From the factor w – 1 in 
(734)] But the true curve, that in this motion is described by the body, does not differ 
from the orbit, except that it is in the opposite sense.  
 

Corollary 7.  
736. If w > 1, then as a consequence the orbit is moving;  and the greater this motion 
becomes, the greater also becomes the centripetal force. But if  w < 1,  with the orbit 
pulling  in the opposite direction, and the centripetal force is less, as 12 −w  is negative.  

 
Corollary 8.  

737. If w = 0, then this makes c = 0, and the body is moving along a straight line, since in 
this case the angular motion of the orbit is equal and opposite to the angular motion of the 
body in its orbit.   
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Corollary 9.  
738. If w is negative, surely equal to n− , then the  body moves on the same curve as if  
[p. 305] nw += , only with this distinction, that the body proceeds in the opposite sense.  
And on this account the centripetal force retains the same value, whether w takes positive 
or negative values. Likewise the same result holds generally, if w is a variable quantity.   
 

Example.  
739. Let the curve (A)(M)(B) be an ellipse and the centre of forces C of this one of the 
focal points.  The latus rectum of this is put equal to L and the transverse axis  (A)(B) = 
A; the distance a [from the focus as origin] is given by : 

 
and  

 
[Note that the use of the eccentricity e had not yet been developed for conic sections, and 
conics were specified by their width and the length of the latus rectum or focal chord. In 
modern terminology, with the semi-latus rectum )e(al 21−= and )e(ab 222 1−= , and 

the  pedal equation of an ellipse is given by 12
2

2
−= r

a
p
b , see Lockwood p. 21. Hence, 

notation. sEuler'in  , 22
22

1
2

2 222

yA
y)/L)(/A(

ra
alr

ra
r)e(a

ra
rbp −−−

−
− ====  The first result is 

easily found from the 'constant length of string principle' used to draw an ellipse, applied 
to the rt. triangle formed by the semi-latus rectum FP = L/2, the interfocal distance FF', 
and the distance F'P, where FP + F'P = A.] 
If besides, w is constant; the force operating in order that the body travels in a rotating 

ellipse is equal to: 3

22

2

2 124
y

)w(a
Ly
a −+ γγ  (734). [For, on differentiating the 4 p2 equation 

above, we have 2

32
Ly

p
dy
dp = .] Truly the angle (A)CA, that the orbit completes, while the 

body travels through the arc (A)(M), is equal to )M(C)A)(w( 1−  (733). The equation 
for the curve itself that the body describes, of which the element is μM , is found by 
finding the equation between CM = y and π=ΘC . Moreover, we have   

 
and  

 
which values substituted in the equation 

)pwqq(
wpy

22+
=π  give this [pedal] equation for 

the curve itself described:  
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Scholium 1.  
740. The curves themselves, which bodies describe acted on by centripetal forces of this 
kind, otherwise are most difficult to be recognised and their form from this consideration 
does not mean that in any way they can be determined. [p. 306] Therefore investigations 
of centripetal forces of this kind have the maximum use for curves generated by some 
given force, from which in turn, from the given centripetal forces, properties of the 
curves themselves can become known. For so complex expressions of the forces acting 
there occur in the motions of heavenly bodies, so that none of the orbits of these can be 
determined, except perhaps these forces can be understood in some such case, for which 
the orbits can be determined after the centripetal force has been found. 

 
Scholium 2.  

741. If a body is taken to be moving in a moving orbit of this kind, the motion of this 
body and the distance at some time from the centre C can be determined. And just as 
often as the body in the orbit arrives at the points(A) and (B), so the distance from C is a 
minimum or a maximum.  Whereby when the rotary motion of the line (A)(B), which is 
called the line of the apses, is given, it is possible to define when the distance from the 
centre C is a maximum or a minimum. Newton has explored this problem in the 
Principia, Book I, in the whole of Section IX, and that theory applies the motion of the 
apses in the determination of the moon's orbit. But this examination is applied with less 
accuracy to the moon, since the lunar force is not acting at any fixed point, as we have 
put here, but is always exerted from some variable point.  Therefore we will give the 
work, in order that, after we have explained relevant matters here, we will offer other 
more suitable propositions, which can be transferred to the motion of the moon. [p. 307] 
 
 

PROPOSITION 90.  
 

PROBLEM.  
742.  For the known curve, that a body describes acting under some central force V, to 
determine the curve, that the body describes acted on the centripetal force 3y

CV + , with y 

denoting the distance  MC of the body from the centre of forces C.  
[See also L. Euler Commentationem 232 (the Enestrom index) : De motu corporum coelestium a viribus 
quibuscunque perturbato, Novi comment. acam. se. Petrop. (1752/53); Leonardi Euleri Opera omnia, 
series II, vol. 21. P. St.]  
    

SOLUTION. 
 With the centripetal force 3y

CV +  acting, the speed of the body, which is projected at 

(A) along a direction normal to the direction of the radius C(A), corresponding to the 
height c, and C(A) is put equal to a. Moreover with the force V acting,  (A)(M)(B) is the 
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orbit, in which the body moves projected at (A) along the same direction, but with a speed  
corresponding to the heightγ . Now from the preceding proposition it has been shown 

that a force of the form 3y
CV +  is to be acting, in order that the body in the same orbit  

(A)(M)(B), but moving around the centre C in a given ratio to the angular motion of the 
orbit. Therefore the ratio becomes 1−w  to 1,  as the orbital angular motion to the angular 
motion of the body in that orbit, while it is at M, and also it is given that γ2wc =  (732) 
and the perpendicular from C sent to the tangent of the orbit at  M is called CT = p. 

Hence making the centripetal force equal to
dyp
dpa

3

22 γ , in order that the body moves in the 

stationary orbit (A)(M)(B), and thus  

 
as therefore we are able to construct the equation on account of the given curve 
(A)(M)(B) (by hypothesis). Moreover the force acting V, [p. 308] in order that the body in 
the same orbit can move in the manner described, is given by :  

 
(734). On account of which we have :   

 
From which there is produced :  

  
and  

 
Hence:  

 
and, [as γ2wc = ],  

 
Therefore the curve, that the body at (A) describes with the speed of projection 
corresponding to the height 2

2

2
2

a
Cca −  acted on by the force  V,  the force 3y

CV + acting on 

the body, in order that the body at (A) projected with the speed c   is moving in the same 
mobile orbit thus, in order that the angular motion of the orbit to the angular motion of 

the body in this orbit, shall be as 
)Cca(

)Cca(ca

−

−−
2

22

2

22 to 1. Moreover the motion of the body 

in that orbit is the same, as that which it has in a stationary orbit acted on only by the 
force V and projected with a speed at (A) corresponding to the height 2

2

2
2

a
Cca −  , which 

motion by hypothesis is known. Q.E.I.  
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Corollary 1.  
743. Therefore while the body reaches (B) from (A)   in the orbit, or rotates around the 
centre C by an angle of 180, meanwhile the orbit itself has turned about C  
through an angle of  

 
Corollary 2.  

744. Therefore if the line (A)(B) is the apse line, the point (A) is the closer point, and (B) 
truly the greater of the apses, as they are called in Astronomy; therefore the body arrives 
at the larger from the smaller apse in an absolute motion around C of  [p. 309] 

 
degrees.  

 
Corollary 3.  

745. The time, in which the body arrives at M from (A) in the moving orbit, is equal to 
the time, in which  in the stationary orbit it reaches (M) from (A). Therefore the angle   
(A)CM has to the angle (A)C (M) the ratio w to 1, i. e. as  

 

 
 

Example.  
746. Let the force V be inversely proportional to the square of the distance from the 

centre or yy
ffV = , the curve (A)(M)(B) is an ellipse, in the focus of which is put the centre 

of the forces C. Let the transverse axis of this ellipse be (A)(B) = A and the latus rectum = 

L, then [as above] )ALA(ACBCA)ALA(Aa −+==−−= 2
2
1

2
12

2
1

2
1 )( and )( . On 

account of yA
ALypp −=4 then we have :  

 
Hence there becomes :  

2

2

4
22422  and   thus244

a
CLff

ff
Cca c,CcaLffa +− =−==γ .  

Which is the height corresponding to the speed of the body at (A) for the orbit to be 

moving under the central force 32 y
C

y
ff + . Truly the orbital angular motion is to the angular 

motion of the body in the orbit as :  
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to 1. And the body arrives at the further apse from the nearer one, after the angular 
motion has completed an angle of :  

 
degrees. [p. 310] 
 

PROPOSITION 91.  
 

PROBLEM.  
747.  If the figure that the body describes on being acted on by some central force does 
differ much  from a circle, to determine the motion of the apses.  
    

SOLUTION. 
 The motion of this is to be compared with the motion of the body in a moving ellipse 
with a small eccentricity, of which one or other focus is placed at the centre of the forces. 
Therefore in this stationary orbit the body is moving acted on by a centripetal force 
inversely proportional to the square of the distance. Truly the body is moving in the same 
orbit if the centripetal force is equal to 3y

Cffy+  (746). With the preceding denominators 

kept in place, and putting ;zay +=  where z is extremely small with respect to a, since 
the curve described by the body is put as nearly circular.  Whereby the former centripetal 

force is equal to 3y
ffzCaff ++ , and as 2a is approximately equal to the latus rectum L. Now 

the centripetal force acting is put equal to 3y
P , in which P is some function of  y. The 

value za +  is put in place of y in P, and P can be changed into FzE + by rejecting terms 
in which z has a dimension greater than one, on account of z being so small. Therefore 
this formula has to be compared with ffzCaff ++  : 

.aFECECaFFfffF −==+== or   and or  With these substituted, the body acted 
on by this centripetal force 3y

P comes from the smaller to the larger apse, with the angle  

⎟
⎠
⎞⎜

⎝
⎛ + Lff

C21180 degrees [p. 311] for the absolute angular motion (746). Or with 2a put in 

place of L and F in place of  ff and aFEC −= , this angle becomes aF
E180 degrees. If 

indeed the orbit does not disagree much from being circular. Q.E.I.  
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Corollary 1.  
748. Truly the apsidal line (A)(B), while the body rotates through an angle of  360 

degrees about C, is moved by the orbital angular motion through an angle 360.
E

aFE −  

degrees. For the angular motion of the orbital is put proportional to the angular motion of 

the body on account of the centripetal force 32 y
C

y
ff +  (734).  

 
Corollary 2.  

749. Since E is such a function of a, just as P is of y, Fz is the increment of E from the 
increase of a by the element z. Whereby on putting daz = then dEFda = , and likewise 
the angle, by which the body arrives at the larger apse from the smaller one, is equal to 

adE
Eda180 degrees.  

Corollary 3.  
750. Since E is such a function of a, as P is of y, y can be put in adE

Eda in place of  a and P 

in place of E. On account of which by the presence of the centripetal force 3y
P , the body 

moves  from the small apse to the large apse in an absolute angle of ydp
pdy180 degrees. 

And if y remains in this expression,  a can be written in place of y, clearly with a small 
discrepancy. [p. 312] 
 

Corollary 4.  
751. If we set E

dE
a

da >  or P
dP

y
dy > , then the ellipse by its own motion expresses the true 

motion of the body by moving forwards [as 1>adE
Eda , etc]. For if P

dP
y

dy < ,  then the line 

of the apses moves backwards. But if P
dP

y
dy =  or yP α= , in which case the centripetal 

force is inversely proportional to the square of the distance, and the apse line remains at 
rest, or the body, after the angular motion has completed 180 degrees, has gone in turn 
from the nearer apse to the further apse.   
 

Corollary 5.  
752. Moreover for a given angle, in which the body goes from one apse to the other and 

back again, which is μ360 degrees, we have ydP
Pdy=2μ  and likewise yP αμμ =  or 

μμα
1

)y(P = .  
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Therefore the centripetal force 3y

P  which makes the apsidal line have such a motion, is 

2

231

μ

μ−

y .  [P is thus the function of y required in the proposition].  
 

Corollary 6.  
753. If it happens, that ydP

Pdy or dP is made negative, then the motion of the apses is 

imaginary. From which it is understood that the body is never able to proceed from one 
apse to the other, but continually either recedes further from the centre or approaches the 
centre, or evidently it is in a closed orbit that does not change.   
 

Corollary 7.  
754. If the centripetal force is proportional to the power of the distance ny , then 

3+= nyP . Whereby 3
1
+= nydP

Pdy , [p. 313] and the body goes from the closer to the further 

apse while going through the absolute angle about C of
)n( 3

180
+

degrees; and to go from 

the greater or smaller apse to return to the same by going through an angle of 

)n( 3
360
+

degrees.  

Corollary 8.  
755. If )n( 3+ is a rational number and m the smallest whole number, from which 

)n(
m

3+
 makes some whole number, then after completing

)n(
m

3+
 revolutions about the 

centre C the body has fallen on the same point and the curve described by the body has 
completed as many whole turns before it is restored and closed. But if n + 3 is not a 
perfect square, then the curve can never be restored to its starting point, but the body 
indefinitely travels around the centre C,  and neither does it at any time revert to the same 
path.   

 
Example 1.  

756. If the centre of forces attracts in the inverse cube of the distances, then n + 3 = 0. 
Hence in this hypothesis, the body cannot travel from one apse to the other except by 
completing an infinite number of revolutions.  And if the centripetal force decreases in a 
greater ratio than the third power of the distances, the curve clearly does not have two 
apses, but will either go to infinity or terminate as a logarithmic spiral towards the centre.  
[p. 314] 

 
Example 2.  

757. If the centripetal force is inversely proportional to the square of the distance, then  
 n + 3 = 1. Whereby while the body by the absolute angular motion completes an angle of 
180 degrees it travels from one apse to the other, and the curve after any revolution 
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returns to its initial condition. For the body it travelling in an ellipse, in either focus of 
which is placed the centre of forces, and the transverse axis of this ellipse is the line of 
the apses.  
 

Example 3.  
758. If the centripetal force varies inversely as the distance, then n + 3 = 2. Therefore the 
body arrives at one apse from the other after the orbit has turned through an angle of 

2
180  

or 127 degrees and 17'. Truly the orbit never returns on itself on account of the 
irrational 2 .  
 

Example 4.  
759. If the centripetal force is constant at all distances, then n  = 0.  In this case the body 
goes from one apse to the other while the angular motion carries the orbit through an 
angle of 

3
180  degrees, i. e. 103 degrees and 55' approximately.  

 
Example 5.  

760. If the centripetal force varies directly as the distance of the body from the centre, in 
which case the body is agreed to be moving in an ellipse, in the centre of which the centre 
of force has been placed. (631). Therefore with the apses standing apart by an angle of  
90 degrees. The same can truly be deduced from this rule. for on account of n = 1 the 
angle is 90

3
180 =
+n

. [p. 315] 

Scholium 1.  
761. Therefore as often as the body is projected around the centre of force with such a 
velocity, so that it almost revolves in a circle, with the help of this proposition the true 
curve that the body describes can be determined, which is not possible by considering the 
centripetal force alone. For which it is evident on greater contemplation that there are 
more uses of this kind for these orbits, by determining other more difficult orbits from 
these that can easily be defined. Newton has set out the same proposition in Sect. IX , 
Prop. 45.  

 
Scholium 2.  

762. Now we have shown above that a body acting under a hypothetical centripetal force 
varying inversely as the cube of the distance falling to the centre,  arrives in a finite time 
and does not to escape from that point, but as it were,  to be annihilated suddenly (675 
and 676). The same also prevails if the body falls to the centre along a straight line.  And 
in a similar manner, if the centripetal force decreases in a ratio greater than the inverse 
cube of the distance, the body at once arrives at the centre, where it vanishes and neither 
progresses further than the centre nor returns. For whatever you please, it would be 
absurd for the curve that the body describes, projected with a certain velocity, to have 
two apses (756). Moreover as often as the centripetal force decreases in a ratio less than 
the cube, as in the simple ratio of the distance or greater than that, the body recedes, after 
it arrives at the centre, [p. 316] along the same line by which it approached; for this is 
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evident for the inverse square of the distance (655) and for the simple ratio, from which it 
is apparent (271) that the body cannot progress beyond the centre. But if  n + 1 > 0, the 
body falling towards the centre along a straight line has a finite speed, by which beyond 
the centre it can progress along the same straight line, as long as it was losing speed  
(273). Therefore in this way we have satisfied the above desire (272),  in which it was 
necessary to define the linear motion of the falling body, when it arrived at the centre.  
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CAPUT QUINTUM  

 
DE MOTU CURVILINEO PUNCTI LIBERI 

A QUIBUSCUNQUE PONTENTIIS ABSOLUTIS SOLLICITATI 
.  

PROPOSITIO 86.  
 

PROBLEMA.  
707.  Invenire legem vis perpetuo deorsum secundum rectas MP (Fig. 62) inter se 
parallelas tendentis, quae faciat, ut corpus in data curva AM moveatur, atque 
determinare corporis in singulus locis M celeritatem. [p. 292] 
   
 

SOLUTIO. 
 Per rectas MP ducatur normalis AP, et vocetur AP x et 
PM y. Ponatur curva AM = s et radius osculi MR in M = r, 

erit ddx
dsdyr =  sumto ds pro constante. Porro debita sit 

corporis in M celeritas altitudini v, et vis corpus in M 
trahens secundum MP ponatur P. Ex his habebuntur duae 
istae aequationes Pdydv −=  et vdsdxPr 2=  (557), ex 
quibus, si cognita esset v, statim apparet quantitas ipsius P. 
Eliminatur igitur P ad v inveniendum ex hac aequatione 

vdsdyrdxdv 2−= , quae posito loco r eius valore ddx
dsdy abit 

in hanc dx
ddx

v
dv 2=− , quae integrata dat 2

2

ds
dxlvlCl =− . Cognita autem sit celeritas in 

puncto A, eaque debeatur altitudini c, atque sit consinus anguli MAP seu valor ipsius 

ds
dx incidente puncto M in A = λ. Hinc ergo erit λlclCl 2+= et consequenter  

2

22

dx
cdsv λ= ,  

unde corporis in singulis locis M celeritas innotescit.  
 Vis autem sollicitans P reperietur 

 
 
Sive sumto dx pro constante, quo casu est dxddy

dsr −=
3

, erit  
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Tempus denique, quo arcus AM percurritur, erit  
 

 
 
Q.E.I.  
 

Corollarium 1.  
708. Quaecunque ergo sit vis sollicitans, corpus perpetuo aequabiliter secundum 
horizontem progreditur ob tempus per AM proportionale ipsi AP, uti iam supra est 
observatum (579). [p. 293] 
 

Corollarium 2.  
709. Si ex R in rectam MP productam demittatur perpendicularis RS et ex S in MR 
quoque perpendicularum ST atque denique tertium perpendiculum TV ex T in MS, erit 

3

3

ds
rdxMV = . Quare vis sollicitans P se habebit ad vim gravitatis ut c22λ  ad MV, seu P est 

reciproce ut MV. 
  

Corollarium 3.  
710. Si angulus ad A est rectus, fiet λ = 0. Quo casu corpus directe sursum ascendere 
debebit. At si tantum sit λ infinite parvum atque c infinite magnum, ita ut c22λ finitum 
habeat valorem, corpus in huiusmodi curva utique moveri poterit.  
 

 
 

Exemplum 1.  
711. Sit curva AM circulus, cuius diameter posita sit in axe AP, et radius = a. Erit itaque r 
= a et .y:adx:ds =  Hanc ob rem fiet  

2

22

3

22
et  2

y
ca

y
ca vP λλ ==  

Vis ergo corpus in M deorum trahens est reciproce ut cubis applicatae MP et celeritas 
reciproce ut haec ipsa applicata. Altitudo vero generans celeritatem in summo peripheriae 
puncto, ubi fit y = a, est = .c2λ  
 

Exemplum 2.  
712. Sit curva AMC (Fig. 63) parabola, cuius axis CB est verticalis et parameter = a. 
Ducatur horizontalis MQ et ponatur CQ = t et MQ = z, erit .atz =2  Praeterea vero erit 

dzdx −= et dtdy −=  [p. 294] et ut ante ds)dzdt( =+ 22 . Quocirca fiet 

2

2

2

22 2 and 
dz

cddt
dz
cds Pv λλ == . Debita sit celeritas in puncto summo C altitudini b, eritque, 
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ob dzds =  in C, bc =2λ ideoque 22

2 2et  
dz
bddt

dz
bds Pv == , sumto dz pro constante. Ex 

aequatione vero atz =2 fit a
zdzdt 2=  et a

dzddt
22=  atque )(dzds

a
z
2

2422 1+= .  

Consequenter  invenitur  
  

 
et a

bP 4= .  
Ex quo apparet potentiam deorsum tendentem, quae efficit, ut corpus in hac parabola 
progrediatur, esse constantem. Quare igitur, si aequalis sit gravitati = 1, fiet 

== 4
ab distantiae foci a vertice. Quae conveniunt cum supra inventis (564 et sqq.) 

Exemplum 3.  
 

713. Sit curva MAN (Fig. 64) hyperbola centro C 
descripta habens axem CP verticalem. Ponatur 
semiaxis transversus AC = a et semiaxis 
coniugatus = e atque CP = t ac PM = z,  sitque 
insuper altitudo celeritati, quam corpus in A 
habet, debita = b, erit ut supra pro parabola 
fecimus,  

  
sumto dz constante. Est vero ex natura hyperbola 

222222 teeaza +−= , ex qua fit 
te

zdzadt 2

2
=  et  

 
Consequenter  erit  

32

42
te
baP = ,  

seu potentia corpus deorsum trahens ubique in M proportionalis est reciproce cubo 
distantiae ML puncti M ab horizontali LC per centrum C ducta. Porro erit  

 
Atque praeterea habebitur  
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[p. 295] 
PROPOSITIO 87.  

 
PROBLEMA.  

714.  Data curva AMB (Fig. 65) una cum centro virium C invenire legem vis centripetae, 
quae faciat, ut corpus in hac curva libere moveatur, ut et celeritatem corporis in loco  
quavis M.  
    

SOLUTIO. 
 Quia curva AMB una cum puncto C est dat, quaeratur 
aequatio inter distantiam MC cuiusque curvae puncti M a 
centro C et perpendiculum CT, quod ex C in tangentem 
MT demittitur. Quare posita CM = y et CT = p habebitur 
inter p et y aequatio. Iam sit corporis in dato loco A 
celeritas debita altitudini c atque perpendiculum ex C in 
tangentem in A demissum = h. Eorum vero, quae sunt 
incognita, vocetur altitudo debita celeritati in M = v et vis 

centripeta in M = P. His positis erit  2

2

p
chv =  (589) atque 

dyp
dpchP 3

22=  (592). Vel posito 

radio osculi in M = r erit 
rp
ychP 3

22= (592). Q.E.I. 

 
Corollarium 1.  

715. Tempus etiam, quo corpus quemvis arcum AM absolvit, erit =
ch

ACM2  seu erit 

proportionale areae ACM (588).  
 

Corollarium 2.  
716. Quia 2ch est quantitas constans, erit vis centripeta in puncto quovis M proportionalis 

[p. 296] huic valori 
dyp

dp
3 seu huic 

rp
y
3 . Celeritas vero v proportionalis est reciproce 

perpendiculo CT in tangentem MT demisso (589).  
 

Exemplum 1.  
717. Sit curva data ellipsis et centrum virium C in ipso eius centro positum. Vocetur eius 
semiaxis transversus a et semiaxis coniugatus b; erit ex natura ellipsis 

)yba(
abp

222 −+
= . 

Habebitur ergo 
2
3

222 )yba(

abydydp
−+

=  ideoque 223 ba
y

dyp
dp = . Quocirca prodibit vis centripeta  

22

22
ba

ychP = ,  

quae igitur proportionalis est distantiae corporis a centro.  
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Exemplum 2.  
718. Sit curva data iterum ellipsis, at centrum virium C in eius alterutro foco positum. 
Ponatur eius axis transversus = A et latus rectum = L, eritque ex natura ellipsis 

yA
ALypp −=4 . Differentiando ergo fit 2

2

8
)yA(

LdyApdp
−

= . Quia vero est 2

222416
)yA(

yLAp
−

= , erit 

232 Ly
dy

p
dp =  et consequenter  

2

24
Ly
chP = .  

Vis igitur centripeta reciproce erit proportionalis quadrato distantiae corporis a centro 
virium C.  

 
Exemplum 3.  

719. Sit curva spiralis logarithmica et centrum virium C in eius centro positum; erit 

323
1et  
yndyp

dpnyp == , ideoque 32

22
yn

chP = .  

Quare vis centripeta erit reciproce ut cubus distantiae corporis a centro. [p. 297] 
 

PROPOSITIO 88.  
 

THEOREMA.  
 

720.  Vis tendens ad centrum C (Fig. 66), quae facit, ut corpus in data curva AM 
moveatur, se habet ad vim tendentem ad aliud centriud c, quae facit, ut corpus in eadem 
curva et eodem tempore periodico moveatur, ut cubis rectae cV ex c ad tangentem TM 
parallele rectae CM ductae ad solidum ex recta cM in quadratu rectae CM.  
    

DEMONSTRATIO. 
 Sit corporis celeritas in dato puncto A, cum corpus circa 
centrum virium C revolvitur, debita altitudini c et 
perpendiculum ex C in tangentem in A demissum = h. At cum 
corpus circa centrum virium c movetur, sit celeritas in A debita 
altitudini γ et perpendiculum ex centro c in tangentem in A 
demissum = θ. Quia autem tempora periodica circa utrumque 
virium centrum sunt aequalia, erit γθ=ch seu 

22 γθ=ch (715). Ex centro C et c porro in tangentem in M 
demittantur perpendicula CT et ct, sitque radius osculi in M = 
r. His positis erit vis centripeta in M ad centrum C tendens, 

quam vocemus P, = 3

22
CT.r

CM.ch  atque vis centripeta in M ad centrum c tendens, quam 

vocemus Π, = 3

22
ct.r

cM.γθ  (714). Quamobrem ob 22 γθ=ch  erit  
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Ducta autem cV parallela rectae CM erit, ob triangula TCM et tcV similia, 

cV:CMct:CT = . Hance ob rem erit  

 
Q.E.D. [p. 298] 
 

Corollarium 1.  
721. In eodem puncto M erit celeritas corporis, dum ad virium centrum C attrahitur, ad 
celeritatem, dum ad alterum centrum c attrahitur, reciproce ut CT ad ct sive directe ut cV 
ad CM. Sequitur hoc ex eo, quod est 22 γθ=ch .  
 

Corollarium 2.  
722. Si tempora periodica non sint aequalia, sed sint inter se ut T ad t, erit 

γθ
11 :t:T

ch
=  seu 2222 T:t:ch =γθ . Consequenter erit   

 
Seu vires P et Π erunt in ratione composita ex ratione in theoremate assignata et inversa 
duplicata temporum periodicorum.  
 

Corollarium 3.  
723. Eodem hoc casu, quo tempora periodica sunt inaequalia, erit celeritas in M, centro 
virium in C posito, ad celeritatem in M, centro virium in c posito, in ratione reciproca 
composita ex ratione perpendiculorum CT et ct et ratione temporum periodicorum T : t.  

 
Scholion 1.  

724. Propositionem hanc Neutonus deduxit ex Lib. I. prop. VII in coroll. 3 Princ. eaque 
utitur ad inveniendam vim centripetam tendentem ad punctum quodcunque ex cognita vi 
ad aliud quodpiam centrum trahente. Nos hic usum eius in unico exemplo sequente 
ostendemus. [p. 299] 
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Exemplum.  
725. Sit curva data circulus AMc (Fig. 67), alterumque 
centrum virium positum sit in ipso circuli centro C. Vis 
igitur centripeta P ad C tendens ubique erit constans 
dicaturque g. Ex hac quaeratur vis ad centrum virium c in 
peripheria situm tendens Π faciensque, ut corpus eodem 
tempore periodico in circulo moveatur. Demittatur ergo ex 
c in tangentem MV perpendiculum cV, quod ex natura 
circuli simul parallelum erit rectae CM. Quamobrem erit 

23 CM.cM:cV:g =Π ideoque  

 
Ducatur recta AM, erunt triangula cVM, cMA ob ang.cMV = cAM similia et propterea 

cA:cMcM:cV = . Habetur ergo CM
cMcV 2

2
= , ex quo fit  

 
Est igitur haec vis Π reciproce ut potestas quinta distantiae Mc corporis a centro virium c, 
ut iam supra (692) est inventum.  

 
Corollarium 4.  

726. Sit celeritas corporis in peripheria circuli circa centrum C revolventis debita 
altitudini c et celeritas corporis in M circa centrum virium c revolventis debita altitudini 
v. Eritque  

 

(721)  seu 4

44
cM
CM.cv = .  

Quamobrem celeritas corporis circa centrum c revolventis erit ubique reciproce ut 
quadratum distantiae eius ab c. [p. 300] 
 

Corollarium 5.  
727. Quia, centro virium in centro circuli C existente, est ==== rpyh  radio CM, erit 

CM
cgP 2==  (592). Hanc ob rem fiet, posito 5

5

5

5

5

5

168
et  

CM
f

CM
f

cM
f cg, ===Π . Ideoque 

4

5

4
 

cM
fv = .  

 
Scholion 2.  

728. In his propositionibus posuimus curvam, quam corpus describit, absolute esse datam 
et aequationem pro ea haberi. Sed dantur etiam casus, quibus curva ipsa, quam corpus 
describit, non datur, sed ex certis conditionibus ad ipsum motum spectantibus ante debet 
inveniri, quam lex vis centripetae potest determinari. Hucque pertinent, quae passim 
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tradita sunt de motu corporum in orbibus mobilibus, qua de re igitur in sequenti 
propositione tractabimus.  
 
 

PROPOSITIO 89.  
 

PROBLEMA.  
729.  Si orbita ( A)(M)(B) (Fig. 65) utcunque  revolvatur circa centrum virium C, oportet 
definiri vim centripetam perpetuo ad C tendentem, quae faciat, ut corpus in hac orbita 
mobili moveatur.  
    

SOLUTIO. 
 Dum orbita ex situ (A)(M)(B) in 
situm AMB pervenit, ponatur corpus 
interea ex (A) in M pervenisse, ita ut 
corpus interea in orbita angulum 
(A)C(M) = ACM, revera autem 
angulum (A)CM = (A)C(M) + (A)CA 
[p. 301] descripserit. Existente initio 
corpore in (A) sit eius celeritas vera, 
non ea, quam in orbita habet, debita 
altitudini c, et recta C(A), quae tam in 
orbitam quam in veram curvam, in qua 
corpus movetur, sit perpendicularis, = 
a. Porro sit celeritas corporis in M , 
quatenus in orbita movetur, debita 
altitudini u et vera corporis celeritas in 
M debita altitudine v. At celeritas 
angularis in orbita sit ad veram 
celeritatem angularem circa C, dum 
corpus in M versatur, ut 1 ad w. In 
orbita igitur tanquam immobili spectata elementum (M)(m) celeritate u describetur. 
Ponatur distantia C(M) = CM – y et perpendiculum in tangentem orbitae in (M) vel M ex 
C demissum pCT)T(C == , habebiturque ob orbitam datam aequatio inter p et y. Iam 
dum corpus in orbita elementum Mm describit, progrediatur ipsa orbita motu angulari 
circa C per angulum = μmC , et hanc ob rem corpus reipsa non in m, sed in μ reperietur, 
sumto CmC =μ , atque idcirco interea elementum Mμ descripsisse censendum est, id 
quod fecit celeritate debita altitudini v. Erit itaque  

 
atque centro C descripto arculo Mv (ob datam motuum angularium circa C in orbita et 
revera rationem w:1  ) erit  

 
Est vero, posita tangente q)py(MT =−= 22 ,  
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Quocirca habebitur  

 
Ex quo ob dymn ==μν  prodibit 2

22

2

22

1
uq

yv
q

pw =+ seu  

 
Quia Mμ est elementum [p. 302] verae curvae, quam corpus describit, demittatur in hoc 
productum ex C perpendiculum ΘC , eritque Θ= C:CMM:M νμ , unde fit  

 
Ex hoc vero perpendiculo cognoscitur vera corporis celeritas ; erit enim 22

2

upw
cvav =  (589) 

ideoque  

 
His loco u et v positis valoribus erit  

 
quam brevitatis gratia vocemus π. Ex hac autem π cognita innotescit ipsa vis centripeta P, 
quae facit, ut corpus in hac data orbita hocque modo mobili moveatur. Namque erit 

dy
cdaP 3

22
π

π=  (592). At ob 222

2222
pwq

ypw
+

=π , erit  

 
 ideoque  

 
seu  

 
Consequenter habebitur  

 
Q.E.I.  
 

Corollarium 1.  
730. Posito radio = 1 est qy

pdy)w(
CM
m 1−=μ  elementum anguli (A)CA, quem orbita confecit, 

dum corpus arcum (A)(M) percurrit. Hanc ob rem erit ang. (A)CA= ∫ −
qy

pdy)w( 1 . Estque 

11 :)w( −  ut celeritas angularis orbitae ad celeritatem angularem corporis, dum est in M, 
ipsa orbita.  
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Corollarium 2.  
731. Cereritas corporis in orbita,  quae est ut u , reciproce proportionalis est ipsi wp. 
Ergo, nisi w sit constans, fieri non potest, ut corpus hoc modo in orbita quiescente 
moveatur attractum ad centrum C. [p. 303] 
 

 
Corollarium 3.  

732. Posito igitur w constante, i. e. ratione motus angularis corporis ad motum angularem 
orbitae perpetuo eadem, erit etiam celeritas corporis in orbita u  reciproce 
proportionalis perpendiculo C(T) in tangentem. Atque vis centripeta ad C tendens atque 

efficiens, ut corpus hac ratione in orbita quiescente moveatur, erit = 
dypw

cdpa
32

22 . Sit enim 

celeritas respectu orbitae, quam corpus in (A) habet, debita altitudini γ , erit 

w:c: 1=γ  (p. hyp.) atque γ2wc = , ex quo vis centripeta ad C tendens faciensque, 

ut corpus in orbita quiescente moveatur, erit =
dyp
dpa

3

22 γ , ut etiam ex supra traditis invenitur 

(591).  
 

Corollarium 4.  
733. Angulus igitur (A)CA in hac hypothesi, qua w ponitur constans, qui ab orbita 
absolvitur, dum corpus arcum (A)(M) percurrit, erit  
 

 
Ergo una tota corporis in orbita revolutione ipsa orbita circa C gyrabitur angulo 

3601)w( −  graduum.  
 

Corollarium 5.  
734. Vis autem, quae efficit, ut corpus in hac orbita mobili proportionaliter motui anguli 
in ipsa orbita moveatur, erit [p. 304] 

 
Quare differentia inter vim centripetam pro orbita immobili et vim pro orbita mobili 
reciproce proportionalis est cubo distantiae corporis a centro virium C.  
 

Corollarium 6.  
735. Si sit w = 1, erit 01=−w  motusque orbitae nullus, quo casu etiam vis centripeta fit 

= 
dyp
dpa

3

22 γ  evanescente altero termino. Idem evenit, si 21seu  1 −=−−= ww , quo casu 

orbita in antecedentia movetur duplo velocius, quam ipsum corpus in orbita ingreditur. At 
vera curva, quae hoc motu a corpore describitur, non differt ab orbita, nisi quod sit 
inversa.  
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Corollarium 7.  
736. Si w > 1, orbita in consequentia movetur; qui motus quo sit maior, eo maior etiam 
erit vis centripeta. At si w < 1,  orbita in antecedentia tendit, et vis centripeta fit minor, ob 

12 −w negativum.  
 

Corollarium 8.  
737. Si w = 0, fit etiam c = 0, corpusque in recta linea movebitur, quia motus angularis 
orbitae hoc casu aequalis fit et contrarius motui angulari corporis in orbita.  
 

Corollarium 9.  
738. Si w est numerus negativus, nempe n−= , corpus in eadem movebitur curva, [p. 
305] ac si esset nw += , hoc tantum discrimine, quod corpus in contrarius plagas 
progrediatur. Et hanc ob rem vis centripeta eundem retinet valorem, sive w affirmative 
sive negative accipiatur. Idem etiam universaliter, si w est quantitas variabilis, obtinet.  
 

Exemplum.  
739. Sit curva (A)(M)(B) ellipsis et centrum virium C eius alteruter focus. Ponatur eius 
latus rectum = L et axis transversus (A)(B) = A; erit  

 
Sit praeterea w constans; erit vis, quae facit, ut corpus in hac ellipsi mobili moveatur, = 

3

22

2

2 124
y

)w(a
Ly
a −+ γγ  (734). Angulus vero (A)CA, quem orbita absolvit, dum corpus in ea 

arcum (A)(M) percurrit,erit = )M(C)A)(w( 1−  (733). Aequatio vero pro ipsa curva, 
quam corpus describit, cuius elementum est μM , habebitur invenienda aequatione inter 
CM = y et π=ΘC . Est autem  

 
qui valores in aequatione 

)pwqq(
wpy

22+
=π  substituti dabunt aequationem pro ipsa curva 

descripta hanc  

 
 

Scholion 1.  
740. Curvae ipsae, quas corpora a huiusmodi viribus centripetis sollicitata describunt, 
difficillime alias cognoscerentur earumque forma hac consideratione non adhibita 
nequaquam posset determinari. [p. 306]Maximam igitur habent utilitatem huiusmodi 
virium centripetarum investigationes pro curvis ex datis utcunque generatis, quo 
reciproce ex viribus centripetis datis ipsae curvae earumque proprietates innotescant. 
Occurrunt enim in motibus corporum coelestium tam complexae virium ea sollicitantium 
expressiones, ut omnino eorum orbitae determinari nequaeant, nisi forte illae vires 
comprehendantur in tali quodam casu, de quo a posteriori vis centripeta est inventa.  
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Scholion 2.  
741. Si corpus in huiusmodi orbita mobili moveri deprehenditur, motus eius et distantia 
quovis tempore a centro C poterit determinari. Atque quoties corpus in orbita in puncta 
(A) et (B) pervenit, tum in minima vel  maxima a C erit distantia. Quare cum motus 
gyratorius lineae (A)(B), quae linea absidum vocatur, sit datus, definire poterit, quando 
corporis a centro C distantia sit maxima vel minima. Neutonus hanc rem pertractavit in 
Prin. Libro I. tota Sectione IX, eaque theoria utitur ad motum lineae absidum orbitae 
lunaris determinandum. Sed minus accurate haec consideratio ad lunam accommodari 
potest, cum vis lunam sollicitans non ad punctum quoddam fixum C, ut hic posuimus, sed 
perpetuo variabile tendat. Operam igitur dabimus, ut, postquam reliqua huc pertinentia 
explicaverimus, alias propositiones magins idoneas afferamus, quae ad motum lunae 
transferri queant. [p. 307] 
 
 

PROPOSITIO 90.  
 

PROBLEMA.  
742.  Cognita curve, quam corpus vi quacunque centripeta V sollicitatum describit, 
determinare curvam, quam corpus a vi centripeta 3y

CV + , denotante y distantium MC 

corporis a centro virium C, sollicitatum describet.  
[Vide etiam L. Euleri Commentationem 232 (indices Enestroemiani) : De motu corporum coelestium a 
viribus quibuscunque perturbato, Novi comment. acam. se. Petrop. (1752/53); Leonardi Euleri Opera 
omnia, series II, vol. 21. P. St.]  
    

SOLUTIO. 
 Agente vi centripeta 3y

CV + sit corporis celeritas, qua in (A) secundum directionem ad 

radium C(A) normalem proiicitur, debita altitudini c et ponatur C(A) = a. Urgente autem 
vi V sit (A)(M)(B) orbita, in qua corpus movebitur proiectum in (A) secundum eandem 
directionem, sed celeritate debita altitudini γ . Iam ex praecedente propositione 

manifestum est vi 3y
CV +  efficii, ut corpus in eadem orbita (A)(M)(B), sed circa centrum 

C in data ratione ad motum angularem in ipsa orbita mobili moveatur. Sit igitur 1−w  ad 
1 ut motus angularis orbitae ad motum angularum corporis in ipsa orbita, dum est in M, et 
sit etiam γ2wc =  (732) atque vocetur perpendiculum ex C in tangentem orbitae in M 
demissum CT = p. Hinc est vim centripetam facientem, ut corpus in orbita immobili 

(A)(M)(B) moveatur, fore = 
dyp
dpa

3

22 γ ideoque  

 
quam aequationem ergo ob datam curvam (A)(M)(B) construibilem ponimus (p. hyp.). 
Vis autem efficiens, [p. 308] ut corpus in eadem orbita descripto modo mobili moveatur, 
erit  
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(734). Quamobrem habebitur  

 
Ex quo prodit  

  
atque  

 
Erit ergo  

 
atque  

 
Inventa igitur curva, quam corpus in (A) celeritate altitudinis 2

2

2
2

a
Cca −  proiectum describit 

sollicitatum a vi V, vis 3y
CV + efficiet, ut corpus in (A) celeritate c  proiectum moveatur 

in eadem orbita mobili ita, ut sit motus angularis orbitae ad motum angularem corporis in 

hac orbita, quaemadmodum est 
)Cca(

)Cca(ca

−

−−
2

22

2

22 ad 1. Motus autem corporis in ipsa 

orbita idem erit, quem habet in orbita immobili a vi tantum V sollicitatum et in (A) 
celeritate debita altitudini 2

2

2
2

a
Cca −  proiectum, qui motus per hypothesin est cognitus. 

Q.E.I.  
 

Corollarium 1.  
743. Dum igitur corpus in orbita ex (A) ad (B) pervenit seu circa centrum C angulo 180 
graduum revolvitur, ipsa orbita interea  angulo 

 
graduum circa C gyrabitur.  
 

Corollarium 2.  
744. Si igitur recta (A)(B) est linea absidium, erit punctum (A) ima, punctum (B) vero 
summa absis, uti in Astronomia vocantur; corpus igitur ab abside ima ad summa 
perveniet absoluto motu angulari circa C graduum [p. 309] 
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Corollarium 3.  
745. Tempus, quo corpus in orbita mobili ex (A) in M pervenit, aequatur tempori, quo in 
quiescente ex (A) in (M) pertingit. Angulus vero  
(A)CM se habet ad angulum (A)C (M) ut w ad 1, i. e. ut  

 
ad 1.  
 

Exemplum.  
746. Sit vis V reciproce proportionalis quadrato distantiae a centre seu yy

ffV = , erit curva 

(A)(M)(B) ellipsis, in cuius foco positum est centrum virium C. Sit eius axis transversus 
(A)(B) = A et latus rectum = L, erit 

)ALA(ACBCA)ALA(Aa −+==−−= 2
2
1

2
12

2
1

2
1 )(et  )( . Ob yA

ALypp −=4 erit  

 
Hinc fit  

2

2

4
22422  atque  unde 244

a
CLff

ff
Cca c,CcaLffa +− =−==γ .  

Quae est altitudo debita celeritati corporis in (A) pro orbita mobili ex vi centripta 

32 y
C

y
ff + . Motus vero angularis orbitae erit ad motum angularem corporis in orbita ut  

 
ad 1. Atque corpus abside ima ad summam perveniet, postquam motu angulari angulum  

 
graduum absolverit. [p. 310] 
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PROPOSITIO 91.  
 

PROBLEMA.  
747.  Si figura,  quam corpus a quacunque vi centripeta sollicitatum describit, non 
multum differt a circulo, determinare motum absidum.  
    

SOLUTIO. 
 Comparandus est huiusmodi motus cum motu corporis in ellipsi mobili parum 
excentrica, cuius focus alteruter positus sit in centro virium. In hac igitur orbita 
quiescente corpus movebitur sollicitantum a vi centripeta quadratis distantiarum 
reciproce proportionali. In eadem vero orbita mobili corpus movebitur, si fuerit vis 

centripeta = 3y
Cffy+  (746). Manentibus praecendentibus denominationibus ponatur 

;zay +=  erit z respectu ipsius a valde parvum, quia curva a corpore descripta circulo 

proxima ponitur. Quare vis centripeta illa erit 3y
ffzCaff ++ , et 2a quam proxime erit 

aequalis ipsi lateri recto L. Iam ponatur vis centripeta corpus sollicitans = 3y
P , in qua P sit 

functio quacunque ipsius y. Ponatur in P loco y eius valor za + abeatque P reiectis 
terminis, in quibus z plus una habet dimensionem, ob z tam parvum in .FzE + Hac ergo 
formula cum ffzCaff ++  comparata habebitur 

.aFECECaFFfffF −==+== seu  et  seu  His substitutis corpus ab hac vi 
centripeta 3y

P sollicitatum ab abside ima ad summam perveniet [p. 311] absoluto motu 

angulari angulo ⎟
⎠
⎞⎜

⎝
⎛ + Lff

C21180 graduum (746). Seu posita 2a loco L et F loco ff atque 

.aFEC −=   Seu posito 2a loco L et F loco ff atque aFE − loco C erit iste angulus 

graduum aF
E180 . Si quidem orbita non multum a circulari discrepat. Q.E.I.  

 
Corollarium 1.  

748. Linea vero absidum (A)(B), dum corpus circa C revolvitur angulo 360 graduum, 

movibitur motu angulari per angulum 360.
E

aFE −  graduum. Motus enim angularis 

orbitae proportionalis ponitur motui angulari corporis ob vim centripetam = 32 y
C

y
ff +  

(734).  
Corollarium 2.  

749. Quia E est functio talis ipsius a, qualis P est ipsius y, erit Fz incrementum ipsius E 
crescente a elemento z. Quare posito daz = erit dEFda = , ideoque angulus, quo corpus 

ab abside ima ad summam pervenit, erit = adE
Eda180 graduum.  
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Corollarium 3.  
750. Quia E talis est functio ipsius a, qualis P ipsius y, poterit in adE

Eda poni y loco a et P 

loco E. Quamobrem existenta vi centripeta 3y
P corpus ab abside ima ad summam 

perveniet absoluto angulo ydp
pdy180 graduum. Atque in hac expressione si restet y, poterit 

eius loco a scribi, quippe parum ab y descrepans. [p. 312] 
 

Corollarium 4.  
751. Si fuerit E

dE
a

da >  seu P
dP

y
dy > , ellipsis motu suo verum corporis motum exprimens 

movebitur in consequentia. Sin vero P
dP

y
dy < , linea absidum in antecedentia movebitur. 

At si P
dP

y
dy =  seu yP α= , quo casu vis centripeta reciproce proportionalis est quadratis 

distantiarum, linea absidum quiescet seu corpus, postquam motu angulari angulum 180 
graduum absolverit, ab abside ima ad summam et vicissim pertingit.  
 

Corollarium 5.  
752. Dato autem angulo, quo corpus ab abside altera ad alteram pervenit, qui sit 

μ360 graduum, erit ydP
Pdy=2μ  ideoque yP αμμ =  seu μμα

1

)y(P = .  

Vis ergo centripeta, quae facit, ut lineae absidum tantus sit motus, erit 2

231

μ

μ−

y .  
 

Corollarium 6.  
753. Si accidit, ut ydP

Pdy seu dP fiat negativum, motus absidum erit imaginarius. Ex quo 

cognoscitur corpus nunquam ad absidem alteram pervenire posse ab altera progressum, 
sed perpetuo vel magis recessurum a centro vel ad id accessurum sive in orbita clausa 
prorsus non moveri.  
 

Corollarium 7.  
754. Si vis centripeta proportionalis sit distantiarum potestati ny , erit 3+= nyP . Quare 

fiet 3
1
+= nydP

Pdy , [p. 313] atque corpus ab abside ima ad summam perveniet absoluto 

angulo circa C graduum 
)n( 3

180
+

; a summa vero vel ima abside ad eadem revertetur 

absoluto angulo 
)n( 3

360
+

graduum.  
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Corollarium 8.  
755. Si ergo fuerit )n( 3+ numerus rationalis et m minimus numerus integer, quo fiat 

)n(
m

3+
 quoque numerus integer, tum corpus post 

)n(
m

3+
 revolutiones circa centrum C 

peractas in idem punctum incidet totidemque curva a corpore descripta absolvet spiras, 
antequam in se ipsam redeat atque claudatur. At si n + 3 non est quadratum, curva 
nunquam in se redibit, sed infinitas circa centrum C habebit spiras neque unquam corpus 
in eandem viam revertetur.  
 

Exemplum 1.  
756. Attrahat centrum virium in ratione reciproca triplicata distantiarum; erit n + 3 = 0. 
Hac ergo hypothesi corpus ab altera abside egressum ad alteram nisi infinitis 
revolutionibus peractis non perveniet. Atque si vis centripeta in maiore ratione quam 
triplicata distantiarum decrescat, curva prorsus non habebit duas absides, sed vel in 
infinitum abibit vel in ipso centro ut spiralis logarithmica terminabitur. [p. 314] 

 
Exemplum 2.  

757. Si vis centripeta est quadratis distantiarum reciproce proportionalis erit n + 3 = 1. 
Quare tum corpus motu angulari absolutis 180 gradibus ab altera abside ad alteram 
perveniet et curva post quamvis revolutionem in se ipsam redibit. Corpus enim in ellipse, 
in cuius alterutro foco centrum virium est positum, movebitur eiusque axis transversus est 
ipsa linea absidum.  
 

Exemplum 3.  
758. Si vis centripeta est distantiis reciproce proportionalis, est n + 3 = 2. Corpus igitur ab 
abside ima ad summam perveniet absoluto angulo 

2
180  graduum seu 127 gr. 17'. Orbita 

vero ob 2 irrationale nusquam in se redibit.  
 

Exemplum 4.  
759. Si vis centripeta est constans in omni distantia, est n  = 0. Hoc casu corpus ab altera 
abside egressum ad alteram perveniet motu angulari percurso angulo 

3
180  graduum , i. e. 

103 gr. 55' quam proxime.  
 

Exemplum 5.  
760. Si vis centripeta directe ut corporis a centro distantia, quo casu corpus in ellipsi 
moveri constat, in cuius centro centrum virium est positum (631). Absis igitur ima ad 
summa distabit angulo 90 graduum. Idem vero ex hac regula deducitaur; nam ob n = 1 
erit 90

3
180 =
+n

. [p. 315] 
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Scholion 1.  
761. Quoties igitur corpus circa centrum virium tanta velocitate proiicitur, ut fere in 
circulo deberet revolvi, ope huius propositionis vera curva, quam corpus describet, potest 
determinari, id quod ex solo vis centripetae consideratione fieri non potest. Ex quibus eo 
magis huiusmodi contemplationum usus perspicitur, cum res, quae alias determinatu 
essent difficillimae, ex iis facile definiantur. Neutonus eandem hanc propositionem 
exposuit Sect. IX prop. 45.  

 
Scholion 2.  

762. Iam supra ostendimus corpus in hypothesi vis centripetae cubo distantiae reciproce 
proportionalis ad centrum descendens ad id tempore finito pervenire neque deinde ex eo 
egredi, sed quasi subito annihilari (675 et 676). Idem etiam valet, si corpus recta ad 
centrum descendat. Atque simuli modo, si vis centripeta in maiore quam triplicata 
distantiarum ratione decrescat, corpus, statim ac in centrum pervenerit, ibi evanescet 
neque ultra centrum progredietur neque revertetur. Utrumvis enim eveniat, curva, quam 
corpus velocitate quadam proiectum decrescit, haberet duas absides, quod esset absurdum 
(756). Quoties autem vis centripeta in minore quam triplicata ratione descescit, ut in 
simplici distantiarum ratione vel ea maiore, corpus, postquam in centrum pervernerit, [p. 
316] in eadem recta, qua ad centrum accessit, recedet; perspicitur hoc enim ex ratione 
reciproca duplicata (655) et simplici, de qua patet (271) corpus non ultra centrum posse 
progredi. At si  n + 1 > 0, corpus recta ad centrum descendens finitam habebit 
celeritatem, qua ultra centrum in eadem recta progredietur, quoad motum amiserit (273). 
Hoc ergo modo satisfecimus desiderato superiori (272),  quo motum corporis recta 
descendentis, cum in centrum pervenisset, definiri oportebat.  
 
 
 


