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CHAPTER FOUR.  

CONCERNING THE MOTION OF FREE POINTS 
 IN A MEDIUM WITH RESISTANCE [p. 188] 

 
PROPOSITION 57.  

 
PROBLEM.  

450.  With the time given, in which a body (Fig. 40) is projected up from B and has fallen 
again, in a medium with resistance in the ratio of the square of the speed, and acted on 
by a constant absolute force g, to determine the height BA to which the body rises, in 
order that both the initial and the final speed at B after the descent to the same location B 
are found; and also the ascent time through BA and the descent time through AB.  
 

SOLUTION. 
 

Let the given time equal t, which is the sum of the times of the ascent 
and the descent through  the line BA, and the exponent of the resistance is 
equal to k. The altitude sought is put equal to x. The ascent time through BA  
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(445) and the descent time from A to B  
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(427). From which this equation is formed :   
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from which it is possible to find x. Moreover from the height x known, likewise both the 
times of the ascent through BA and of the descent AB are known. Again from the given 
height BA = x , the height arising from the speed at B, to which it ascends, equals 

)e(gk k
x

1−  (445) and the height generating the speed, to which it descends to B, is equal 

to )e(gk k
x−−1  (420). Q.E.I. 
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Corollary 1.  
 

451. Therefore the ascending speed at B to the speed of descent at the same place is in the 
ratio k

x
e 2  ad 1. From which it is apparent by how much more is lost from the motion, by 

the amount the body ascends higher.  [p. 189] 
 
 

Scholium 1.  
452. If k is a very large number and with the altitude x not very large, so that it is allowed 
to have algebraic expressions in place of the times found above, the ascent time is equal 

to 
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(432). Whereby the sum of the given times produces : 
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approximation.  
Scholium 2.  

453. Moreover this sum of the times can be defined more accurately by continuing the 
series expressed for the ascent and descent times. Of course the ascent time can be made  
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and the descent time   
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On account of which the sum of the times  
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Where it should be noted, if the time is given in seconds, and k and x are expressed in 
scruples of Rhenish feet, the above series is to be divided by 250.  Thus if the time t is μ 
seconds, for t must be substituted  250μ.  
 
 

Corollary 2.  
454. From the above equation by inversion, it is possible to extract the series for x. 
Moreover it becomes :  
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Corollary 3. [p. 190] 
455. The difference between the time of descent and the time of ascent hence will be as 

an approximation : 
gk
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− .  Hence with the altitude x found, likewise the 

ascent time and the descent time become known.   
 

Corollary 4.  
456. Also the altitude corresponding to the speed in which the body begins the ascent is 
equal to :   
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Example.  
457. The iron ball fired upwards from a cannon returns to the earth after 34 seconds, and  
k = 2250000 scruples of Rhenish feet and 7500

7499=g . We will therefore have  t = 8500 and 

4165721
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x = and 1592108.x =  and the total height x, which the ball reaches in air is 

equal to 4443 Rhenish feet. Now let δ be the number of seconds, that the descent lasts 

longer than the ascent ; it will be 
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972370250 .
k

g =δ and hence δ = 5" 50"'. From which it is apparent that the ascent time is 

[p. 191] 14" 5"'  and the descent time is equal to 19" 55"'.  Moreover the altitude 
generating the speed, with which the body begins the ascent, is found to be 15542 feet, 
and the altitude corresponding to the speed, with which it starts to fall, is equal to 1969 
feet. Concerning which, the comment on page 338 of Book II should be seen. 
[Daniel Bernoulli, Dissertation on the action of fluids on solid bodies and the motion of 
solids in fluids. Part four: Concerning the motion of bodies projected up, where the 
experiments are recalled to the calculation performed by the most distinguished Baron 
Gunter with canons set in place. Comment. acad. Petrop. 2 (1727), 1729, p. 329-342. 
Pag. 338 it can be read : The time of the whole ascent and descent is 34 sec., with the 
height to which the cannonball reaches in air with resistance equal to 4550 English feet 
(an English foot is equivalent to 304.79 mm),  the time of the ascent with the air 
resistance is 14.37sec., and the descent time with air resistance is 19.63 sec., the height to 
which the cannonball can be projected by the same force in a vacuum is 13694 English 
feet, the time expended in the motion up and down in a vacuum under the same force is 
58 sec.] 
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Corollary 5.  
458. Since the height corresponding to the speed, with which the body is projected up, is 
equal to  
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the ascent and descent time likewise accepted, if the body is projected up with this speed 
in a vacuum acting under the force of gravity only, equals  
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Corollary 6.  

459. Therefore let the sum of the ascent and descent times in vacuum to the sum of the 
times in the resisting medium be as  
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If clearly in each case the body is projected with the same speed.  
 

Scholion 3.  
460. In the citation in Book II, page 340 the comments concerning the theorem, in which 
these times in a vacuum and in a medium with the resistance varying as the square ratio 
of the speed, as we have established here too, are brought together ; and it is asserted that 
the time in the vacuum is always greater than that in the medium. But indeed from our 
comparison it is apparent that it can be possible for the time in the vacuum to be less than 
the time in the medium. For if  x were very small,  and k truly very large, these times 
between them are approximately as g to 1. [p. 192] Indeed g in the resisting medium on 
account of the force of gravity is always a little less than one, and on account of this the 
time in the vacuum is less than for the time in the medium for these cases. Truly when g 
differs from unity by a small amount, and  x is not very small with respect to k, as in the 
case of firing the cannonball, the time in the vacuum certainly is greater than in the 
resisting medium.  Then if  x > k, it is easy to examine the given case too, in which the 
outcome of that theorem will be different. Moreover the body in the example with the 
reported speed corresponding to a height of 15542 projected up in a vacuum returns to 
the earth in 63 seconds, yet when in the air it does not remain longer than 34". 
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PROPOSITION 58.  
 

PROBLEM.  
461.  If a body after some descent (Fig. 42) is reflected from O up with the same speed 
that it acquired in the descent, and again ascends straight up, and these reflections are 
always repeated when it arrives at O, then the altitudes OA. OB, OC, etc., are sought, 
which the body in this way successively traverses in a medium with a uniform resistance 
varying as the square of the speed, and acted on by a constant force g.   
 

SOLUTION. 
 

With the exponent of the resistance put in place equal to k, as 
has been done up to the present, let the first height be AO = a, and 
it is the height corresponding to the speed, in which the body starts 
from rest. The height corresponding to the speed with which the 

body begins to rise is equal to )e(gk k
a

1−  (439).  [p. 193] Indeed 
the height corresponding to the speed, which by falling through 

AO it reaches the point O, is equal to )e(gk k
a−

−1  (420). The 
following ascent through OB now begins, and OB is made equal to 
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descent through falling BO, is equal to 
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and with this speed the third ascent through OC can begin. Now 
OC = z, and it becomes :   
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Truly the speed, that is acquired in the descent along  CO  corresponds to the altitude :  
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With this speed again the ascent along OD begins, as we call the altitude OD anew z : it 
becomes:  
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In a similar way the fifth altitude is produced  [p. 194] 
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From which it is concluded that the altitude OP, the index of which is n, is equal to :    
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Therefore it is clear, how large the altitude of the body reaches after each reflection from 
the point O. Q.E.I. 

Corollary 1.  
 

462. Likewise from this solution it is evident that the height corresponding to the speed 
acquired in falling through the descent PO is equal to 
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Truly the speed, by which the ascent through OP has been assailed, corresponds to the 
height  
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Corollary 2.  

463. Since 
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And in the same manner :  [p. 195] 
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Corollary 3.  
464. If k is a very large number, in order that k

a  almost vanishes, then an approximation is   
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Since this series is geometrical, then a)n(k
akOP 1−+=  as an approximation.  

 
Corollary 4.  

465. If the first height OA is indefinitely great, non of the smaller heights are finite. 
Indeed, there arises :  

.l.kOP,l.kOD,l.kOC,l.kOB n
n

13
4

2
32 −====  



EULER'S MECHANICA VOL. 1.  
Chapter Four (part b).  

 Translated and annotated by Ian Bruce.                                page 247 
 

Corollary 5.  
466. And if any height is equal to  k.l A, the following height, to which the body after 
rebounding from the first is able to reach, is equal to .l.k A

A 12 −=  Again the third height  
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Scholium 1.  

467. Also negative numbers can be substituted in place of  n, and then the preceding 
altitudes present in the first series can be found. Thus the altitude that follows the first OA 
= a, by putting n = 0, is equal to .l.k

k
a

e−2

1  From which it appears, that if 

2or  2 l.kae k
a

== , [p. 196] then the preceding altitude is infinite. But if it is the case that 

2>k
a

e , the preceding altitude on account of the logarithm of a negative quantity is 
imaginary, that indicates that it is not possible, as so great a real height must be assigned, 
following the initial taken as  a.  
 

Scholium 2.  
468. Since after an infinite altitude it is possible for the motion to follow with a finite 
altitude, which is indeed admirable to consider ; but it is to be considered how a body in a 
resisting medium falling from an infinite height can acquire such a speed (420), and the 
reason for this phenomenon can easily be made clear : for the body is only able to rise 
with this finite speed as far as a certain altitude. Moreover the greatest speed that a body 
can gain in falling is gk  [i. e. its terminal velocity]. Whereby if the body is initially 

projected upwards with a speed greater than gk , this speed cannot be generated by a 
descent of any magnitude ; as also in this case the preceding height calculation of 
imaginary quantities shows.  
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PROBLEM.  

469.  With the resistance of a medium uniform and in proportion to the speed, and with 
the body acted on by an absolute force pulling downwards, to determine the speed of the 
body upwards or downwards at any point on a straight line.  [p. 197] 
 

SOLUTION. 
 

At first the body falls along the line AP (Fig. 39), and the initial 
speed of the body at A corresponds to the altitude c. The absolute force 
is put equal to g, the exponent of the resistance is equal to k and AP = 
x and the height corresponding to the speed at P = v. [The original has 
x instead of v, which is obviously a misprint.] 

With these put in place 
k

vdxgdxdv −= ; for the force of resistance is 

equal to 
k
v . Hence this becomes : 
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By integration this equation gives :   
)vkg(gklkvC)ukg(gklkuCx −−−=−−−= 2222 .  

For with x = 0 it must become v = c, from which  ).ckg(gklkcC −−= 22  

Thus we have :  
)vkg(
)ckg(gklkvkcx

−
−+−= 222 ,  

from which v with the aid of logarithms can be deduced.  
Which had to be shown for the down motion.  
 Now for the ascent let the initial speed at B (Fig. 40) correspond to the altitude c and 
let BP = x and the height corresponding to the speed at P is equal to v. Since in the ascent 

with both the absolute force and the force of retardation, it becomes :  
k

vdxgdxdv −−= . 

Which equation can be deduced from the previous one
k

vdxdgxdv −=  by putting –g in 

place of g. On account of which in this manner the required equation can also be deduced 
from that derived. Therefore with g made negative :   
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+
+−−= 222   

Which had to be shown for the up motion. 
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Corollary 1.  
 

470. If the initial speed in the descent is zero, then .gklkvx
vkg

kg
−

+−= 22  From [p. 

198] which equation the speed of the body can be determined dropped from any height.  
 

Corollary 2.  
 

471. Since indeed )(ll
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the series is obtained :   
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From which on substitution there is given :   
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If now k is made a very large number, as an approximation there is obtained :  
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Corollary 3.  
 

472. If we make kgv 2= , then =∝x  (Fig. 40). From which it appears that the body 
falling from an infinite height is not able to acquire a velocity greater than kg . And if 

once the speed satisfies kgv 2= , then the body progresses with a constant speed ; then 

indeed the motion is one of retardation if the speed satisfies kgv 2> .  
 
 

Corollary 4.  
473. If the body is again projected from B upwards with a speed c , then the altitude BA 
can be found from v = 0. Moreover the equation is produced :  
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Indeed the altitude, from which the body by falling can acquire this speed , is given by :   
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Corollary 5.  
 

474. If the body is again projected with the speed kg , clearly the maximum that it can 
acquire by falling, then the altitude it can reach is given by : ).l(gk 222 − [p. 199] 
 
 

PROPOSITION 60.  
 

PROBLEM.  
475.  With the resistance of the medium in the simple ratio of the speed and acted on by a 
uniform absolute force, to determine the time in which the body traverses some interval, 
either ascending or descending.   

SOLUTION. 
 

As before with the descent through  AP (Fig. 39) in place, with the 
speed at  A = c  and that at P = v , with the exponent of the resistance 
equal to k and the absolute force equal to g, and with the distance AP = x, 
the element of distance  

ukg
kudu

vkg
kdvdx

−−
== 2  

on putting vu  of placein  2 . Now I say with the time to traverse AP = t 

that 
ukg
kdu

u
dudt

−
== 2 .  

From which is given  
vkg
ckglkt

−
−= 2 .  

Which had to be shown for the down motion. 
Since the ascent through BP = x  (Fig. 40), with the initial speed c  given and by 

putting  –g in place of g, the ascent time through BP is given by :  

vkg
ckglkt

+
+= 2 .  

Which had to be shown for the up motion. 
Indeed from the preceding problem, v is defined from the x. Whereby here the time in 

which some interval travelled through can become known.  Q. E. I. 
 

Corollary 1.  
 

476. If the initial speed, with which the body fell was zero, then the descent time for the 

interval AP  .lk
vkg

kg
−

= 2  But v is defined from this equation, [p. 200] 
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Corollary 2.  
 

477. The total altitude BA, to which the body can reach from B ascending, is completed 

in the time
kg

ckglk +2 .  

Corollary 3.  
 

478. Therefore if the initial speed c  should be infinite, also the time, in which the 
whole distance BA is traversed, is infinite, clearly equal to ∝lk2 .  
 

Scholium 1.  
479. Therefore this hypothesis for the resistance differs greatly from the previous case, in 
which the resistance was put in proportion to the square of the speed. For in that case a 
body projected up with an infinite speed reached the maximum point in a finite time 
(444). Truly the time ∝lk2  is to be regarded as an infinite amount of the lowest order.  
From which it seemed to be possible to conclude, if the resistance should be greater than  
in a simple ratio with the speed, then the time of the total ascent should always be finite, 
but otherwise if the resistance is in a simple or smaller ratio of the speeds, the time for the 
whole ascent is infinite, if indeed the initial speed is infinitely great.  
 

Scholium 2.  
480. I have thought that these two hypotheses of the resistance should be enlarged upon 
further than that which have been considered by Newton, and by those who have 
followed him. Indeed this latter hypothesis, in which we have put the resistance to be in 
proportion to the speed, is merely a mathematical device and cannot have any use in 
physics [p. 201]. But since from the beginning, investigators have considered the 
resistance of fluids arising from their tenacity to be in proportion to the speed of the 
body, then an enquiry into this kind of motion should be judged more carefully. Yet 
afterwards, when there has long been an understanding of resistance, this discussion can 
still be retained.  Truly the first, in which the resistance is proportional to the square of 
the speed, merits to be investigated the most : for indeed with certainty the resistance of 
particular fluids keeps this ratio.  Besides in addition, this second hypothesis has to be 
investigated by calculation before so many others, since in other hypotheses there is little 
of merit, yet in this case the calculation is not thwarted.  Indeed in nearly all the 
problems, in which the solutions in the vacuum are not rejected, these can also be 
resolved according to this hypothesis of resistance. On account of this we will chiefly 
examine only that kind of resistance sought which can be found by a neat computation, 
and moreover the rest we mostly ignore.   
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PROPOSITION 61.  
 

PROBLEM.  
 

481.  The medium offers resistance in a ratio according to some power of the speed and a 
uniform  force is acting, it is necessary to determine the right motion of the body either 
ascending or descending. [p. 202] 
 

SOLUTION. 
 

We consider (Fig. 40) the first descent and put the speed at  A = c , the 
interval AP = x and the speed at P = v . Let the exponent of the 

resistance be k and the law of the resistance mv , and the absolute force 
equal to g. Therefore with these in place : 

mm

m

m

m

vgk
dvk

k
dxv dxgdxdv

−
=−=  and . Therefore we have ,x mm

m

vgk
dvk∫ −

=  

and with the help of quadrature it is possible to determine v in terms of  x. 
The time in which the distance AP is transversed, is put equal to t, and  

.dt
vvvgk

dvk
v

dx
mm

m

−
==  And  

.t
vvvgk

dvk
mm

m

∫ −
=  

Which had to be shown for the motion down.  
Now for the ascent the initial speed at B is c , and let BP = x and the speed at P = v  

and the time in which BP is traversed is equal to t. With these in place,  
 m

m

k
dxvgdxdv −−= , which equation is extracted from the other by putting  –g in place of 

g. With which accomplished, for the ascent :   
 

∫∫ ++
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m
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m
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Which had to be found for the upwards motion.  
 

Corollary 1.  
482. If we put mm gkc = , the body is carried with this uniform motion in the descent.  
For the absolute force by which the body is accelerated, is always equal to the force of 
the resistance, by which it is retarded.  [p. 203] 
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Corollary 2.  
483. Indeed a body dropped from rest always accelerates unless at some time it acquires a 
speed corresponding to the altitude kg m

1
. But this speed is as it were an asymptote, since 

it has the effect that the body is either made to move faster or to slow down to this speed.   
 

Scholium 1.  
484. Since neither of these equations found can be integrated, neither v not t can be 
defined at x, it is not expedient to linger over these. I will therefore contemplate other 
mediums in which the resistance is variable, keeping the absolute force constant.  Yet I 
accept a hypothesis of this kind, in which the equation determining dv is made 
homogeneous and thus it is not dependent upon these difficulties. Then the absolute force 
is no further uniform, but I put a variable or I consider a centripetal force in its place, 
which always attracts the body to the some certain fixed point. Since indeed in this first 
case of another kind of resistance, I only consider it in the case where it is proportional to 
the square of the speed. Then indeed it will be appropriate with other hypothetical forms 
of resistance to be introduced, where these are only applied to centripetal forces that 
permit the integration of the differential equations.   
 

PROPOSITION 62.  
 

PROBLEM.  
485.  With a uniform force present, and the exponent of the resistance 
to be in proportion to the distances from a fixed  point C (Fig. 43), and 
with the law of the resistance in some multiple ratio of the speeds, the 
speed of the body at some place is required on the line AC, advancing 
or receding  from C. [p. 204] 
 

SOLUTION. 
 

Let the  uniform force acting at C be equal to g,  with the height 
corresponding to the speed at any point P put in place equal to v. AC is 
put equal to a, which is the maximum height, to which the body 
reaches, and CP = x, the exponent of the resistance is in proportion to 
x;  and this is written as xm

1
λ , and the law of resistance is as mv . With 

these quantities put in place the resistive force is equal to m

m

x
v
λ

, and for 

the ascent through CA, in which both the absolute force and the 
resistive force decelerate the motion, this equation is obtained for the motion : 

 m

m

x
dxvgdxdv

λ
−−= . Here we can consider the descent as well as the ascent, and since in 

the descent the absolute force indeed accelerates, while the resistive force retards, by 
substituting in the ascent equation, the retarding force in the opposite way, the resisting 
force is put in place (411), from which this equation arises for the descent : 
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m

m

x
dxvgdxdv

λ
+−= . Which equation can easily be derived from the other by making λ 

negative, and this on account of the other equation is needed so much in the integration. 
We take the equation for the descent, which is of this kind :  

,dxvdxgxdvx mmm =+ λλ  
and we put .xzv =  Therefore it becomes : ,xdxxdzdv += From which this equation 

arises : .dxzxdxgxzdxxdzx mmmmm =+++ λλλ 1  [p. 205] 

Which divided by  )gzz(x mm λλ −−+1  it is changed into this : x
dx

gzz
dz

m =
−− λλ

λ ,  

in which the indeterminate are now separate.  Therefore this equation can now be 
integrated, as by making x = a , the speed vanishes; with which done from which 
equation to be integrated the speed of the descending body can become known at any 
point. Truly this same equation with  λ made negative looks after defining the speed in 
the ascent through CA. Q.E.I.  
 

Corollary 1.  
486. If m = 1, or the resistance is in proportion to the square of the speed, the equation 
becomes :   

x
dx

gz)(
dz =−− λλ

λ
1  and x

gxv)(
)()( lCxl)gz)((l λλ

λ
λ

λ
λ λλ −−

−− =+=−− 1
11 1  by substituting 

.zx
v  of placein   Moreover since, if x = a, it follows that v = 0, and the constant 

gx
v)(gx

)()( lalxlag)(lC λ
λλ

λ
λ

λ
λ λλ −−

−− +=−−= 1
11   thusand  1 . From which is 

produced:  
 

( ).xxav )(
g

x

xa
)(

gx −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

−−

−
−

−
λλ

λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ 11

1

11

11 .  

 
Corollary 2.  

487. If  λ is made less than one, this equation must be reduced to the other form ; 

moreover it becomes : .v
a

xxa
)(

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−

−
− λ

λ

λλ
λ

λ
λ

1

11

1 [p. 206] 

 
Corollary 3. 

488. The case is which  λ = 1 or the exponent of the resistance is equal to the distance 
itself from the point  C, is not present from these formulas, but can be deduced from the 
differential x

dx
g
dz =− . Moreover it gives xlC g

z =−  and hence )xlal(gxv −= .  
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Corollary 4. 

489. From these in the case m = 1 of the body descending the speed at A as at C is equal 
to 0. For v = 0 is produced in these three equations by putting x = 0 and by putting x = a. 
Therefore the body falling from A to C loses all the motion and is again at rest for ever at 
C on account of the resistance of infinite magnitude.  
 

Corollary 5. 
490. Therefore while the body traverses the straight line AC, somewhere between A and 
C the speed is a maximum, which is found from the differential equation by making dv = 
0. Moreover it then becomes gxv λ= , from which value put in place of v in the 
integrated equations gives by substitution :   

λ
λ

λ
λ

λ
λ

λ
λ 1

11
 and −

−−

== axax , if λ > 1. But if   λ < 1, then ax λ
λ

λ
1

 
−

= ; and if  λ = 1, then 

e
axxlal =−=   thusand 1 , with e denoting the number, the logarithm of which is one.  

 
[p. 207] Scholium 1.  

491. From these it is gathered for the remaining hypothetical resistance also that it is 
allowed for the speed of the body to vanish as it approaches C. For the resistive force is  

m

m

x
v
λ

, which therefore becomes infinite if  x = 0. Whereby if the body has some velocity 

at C, that force of resistance must be reduced to nothing at once.  Truly it has the 
maximum speed in the descent when mm gxv λ= . From which it is apparent that the 
maximum speed corresponds to the height m gx λ . But since x is not known or the place 
in which the body descends the quickest, also the speed itself cannot be determined, 
except by the quadrature of the curve, with the help of which the differential equation is 
constructed.   
 

Corollary 6. 
492. For the ascent from C to A, if m = 1, the speed of the body at the individual points P 

is determined from this equation : ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +

++

−
+ λ

λ

λ
λ

λ
λ

λ
λ

1

11

1 a

xxa
)(

gxv ,  

for which it is necessary to use this equation for the descent, by making λ negative.  
 

Corollary 7. 
493. Therefore in the ascent of the body from C the speed is always infinite. For with x = 
0, since λ

λ 1+ is greater than one, the denominator vanishes. [p. 208] 

 
Scholium 2.  

494. It is also evident that only the speed at C must be infinite. For unless it is so great, 
the body is not able to overcome the resistive force at C, but to remain stuck at C for 
ever.  
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PROPOSITION 63.  
 

THEOREM.  
 

495.  With the same quantities put in place as in the previous 
proposition, if many bodies fall towards C from different heights (Fig. 
43), the times at which they arrive there are in the square root ratio of 
the distances.  

 
DEMONSTRATION. 

 
In the solution of the preceding problem in finding the speed of the 

body at P,  we found this equation : dxvdxgxdvx mmm =+ λλ  (485). In 
which equation x and v are put in place with a number of the same 
dimension everywhere. Therefore with the integral of this equation taken, in order that 
with 0,  making == vax  it has this property, that x, v, and a  are represented by numbers 
with the same dimension. From that it follows that v is equal to a certain function of a 
and x, in which a and x are everywhere constituted with a number of the same dimension; 
or v is a function of a and x of dimension one.  Whereby in the element of time to pass 
through CP, which is

v
dx , the dimension of dx is that of x,  and a is half, and hence on this 

account the time to pass through CP is equal to a function of  a and x agreeing with the 
dimension of a half. Therefore on putting ax = , in which case [p. 209] the time for the 
whole descent through AC is found, a function only of a will be obtained with the 
dimension of a half. On account of which the time to pass through AC can be expressed 
in the form aC , in which C depends on the quantities  gm,   and λ , and does not 
depend on the quantity a. Now since a denotes the height AC, it is evident that the times 
of the descents of many bodies between themselves are in the ratio of the square roots of 
the heights travelled through. Q.E.D.  
 

Corollary 1. 
496. In a like manner it is understood that the times of ascents of many particles from C  
are in the same ratio of the square roots of the heights to which they rise.   
 

Corollary 2. 
497. Therefore in whatever multiple of the speeds ratio the medium resists, as long as the 
absolute force is constant and the exponent of the resistance are proportional to the 
distances from C, both the times of the ascents and of the descents keep the ratio of the 
square root of the height reached.  
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Scholium 1.  
498. Truly is it not permitted to compare either the ascent with the descent nor many 
ascents or descents between themselves, in which the variables gm,  and λ do not hold the 
same values. For in the expression aC  , in every case the quantity C, which is 
compared,  must remain the same. [p. 210] 
 

Scholium 2.  
499. In this same proposition we have used the times of the descents towards a fixed 
point to be compared by a different method than in the above propositions 39 (308) and 
46 (354). Moreover in this case it is considered that this method is better than the other, 
since in that method the speed cannot be determined at x. Indeed this alone is seen to be 
sufficient for us, and a function of this kind of a and x will be expressed by that, to which 
v shall be made equal. Moreover in the following many outstanding examples of this 
method occur.  
 

PROPOSITION 64.  
 

PROBLEM.  
500.  With a centripetal force to be proportional to some power of the 
distance from the centre C (Fig. 43), and with the uniform resistance of 
the medium as the square ratio of the speed,  to determine the speed of 
the body at individual points P on the right line AC, either moving 
either up or down.  

 
SOLUTION. 

 
Let the body at P have a speed corresponding to the height v. CP is 

called x, [AP in the original and in Opera Omnia, but clearly a 
typographical error,]  and the centripetal force shall be as nx  , and that 
distance at which the centripetal force is equal to gravity is equal to  f. 
Then the exponent of the resistance is put equal to k. With these put in 
place, the absolute force acting on the body at P is equal to  n

n

f
x , and 

the force of resistance at this place is k
v , with the force of gravity set 

equal to 1. [p. 211] Now the body is descending to C and it has, as it moves through the 
element pP,  the centripetal accelerating force and the resistive retarding force acting.  
Moreover since here when the body in the inverse motion goes from P to p , it is 
necessary, with increasing  x, that the inverses of these forces are considered to be put in 
place or, since it gives the same result, dx is made negative, since in the descent the 
distance PC = x is being made less. Hence there arises :  k

vdx
f
x dxdv n

n
+−= . Moreover in 
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the ascent of the body through Pp each force is retarding, and thus we have :  

k
vdx

f
x dxdv n

n
−−= . From which it is evident that the one equation can arise from the 

other by making k negative. On account of this it is only necessary for one equation to be 
integrated. We take that for the ascent : dxdvdxdv n

n

n

n

f
x

k
vdx

k
vdx

f
x −=+−−= or  , 

and this is to be multiplied by k
x

e , in order that it gives dx)dv(e n

nk
x

k
x

f
xe

k
vdx −=+ , and the 

integral of this is [An early use of an Euler integrating factor] :   
 

∫−= dxve n

nk
x

k
x

f
xe . Hence it becomes :  ∫−−= dxev n

nk
x

k
x

f
xe .  

Therefore for the descent :  ∫
−

−= dxev n

nk
x

k
x

f
xe .  

In each integration a constant quantity must be added, to be determined from that, since 
the speed of the motion of the body is given everywhere, [p. 212] : for otherwise the 
speed of the body cannot be determined. Q.E.I.  
 

Corollary 1. 
501. It is therefore evident, if  n is a positive whole number, that these formulas can be 
integrated. Indeed the integral is :  

C.  etc. 211 342312 ++−−−−+−= −−−∫ nnnnn xek)n)(n(nxek)n(nxenkxkedxxe k
x

k
x

k
x

k
x

k
x

  

Which series is not infinite, as often as n is a positive whole number.  
 

Corollary 2. 
502. Let the speed at C be given and let it correspond to the height c, the series for v is  :   

;..)...n)(n(ncev n

k
x

n

n

n

n

n

n

n
k
x

f
ek

f
xk)n(n

f
xnk

f
kx

−+−−
−−±+−+−= −− 12312

1221etc. 1  

the upper changeable sign of which prevails if n + 1 is an odd number, and the lower if   
n + 1 is an even number.  
 Moreover for the descent the corresponding height is :  

,..)...n)(n(n.cev n

k
x

n

n

n

n

n

n

n
k
x

f
ek

f
xk)n(n

f
xnk

f
kx 12312

1221etc 1 +−−
−−−++++= −  with the constant 

put in place of C. [p. 213] 
 

Corollary 3. 

503. With the integral of  n

nk
x

f
dxxe  thus taken, in order that it is equal to zero by making  x 

= 0, it is put equal to X. And hence )Xc(ev k
x

−= − , since by making  x = 0 it must 
become v = c. Indeed this equation takes care of the ascent, but it is adapted for the 
descent by making  k negative.  
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Corollary 4. 

504. With X known it is apparent that the height CA, to which the body either can ascend, 
or, from which dropped, it acquires a speed equal to c . For, from the equation X = c, the 
root x gives the height CA.  
 

Corollary 5. 
505. From the differential equation for the descent,  k

vdx
f
x dxdv n

n
+−= , it is apparent that  

the body has a maximum speed somewhere, before it reaches C, which will be there, 
where n

n

f
kxv = , if indeed n is not a negative number.  

 
Corollary 6. 

506. With the height given CA = a,  and if c is sought from this, it is necessary to have 
that quantity, in which X results with a put in place of x. Let that value be A, for which 
the ascent )XA(ev k

x
−= − and for the descent [p. 214] )XA(ev k

x
−= . For by making  

x = a , v should vanish. Now by making x = 0, in which case also X is made zero (503), 
then v = c = A.  
 

Corollary 7. 
507. It is evident from these , how the time can be found in which the interval CP is 

traversed. Clearly for the ascent, the time for CP = ∫ − )XA(
dxe k

x
2  , and for the descent, the 

time for PC = ∫
− )XA(e

dx
k
x

2
.  

 
EXAMPLE. 

508. Let the centripetal force be as the distance from the centre C, in which case n = 1 
(502); hence for the ascent :  

f
ek

f
k

f
kx k

x

k
x
cev

−

−+−= − 22
. 

Truly for the descent :   

f
ek

f
k

f
kx k

x

k
x
cev

22
−++=  

(502). In the descent, the maximum speed is where f
kxv =  (505), from which equation 

with this put in place we have : k
x

k
x

ekkfe 22 =+ . Hence this will be   

cfk
k

cfk
k lkxe k

x

−−
== 2

2

2

2
 and  . 

Therefore this distance is infinite if 2kcf = , and everything is truly imaginary if  
2kcf > . Again let the speed of the body at A be zero, and with AC = a , the height a 
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corresponding to the initial speed for the ascent at C is given by [from the last two 
formulas in the present Prop. 64] :  

f
k

f
ke

f
kae k

a
k
a

22
+− . 

[p. 215] In the descent,  the height corresponding to the final speed is given by :   

f
k

f
ke

f
kae k

a
k
a

22
+−−

−−

.  

From which it is apparent, if  a becomes infinite, the height corresponding to the final 
speed at C is equal to f

k 2
.  

 
PROPOSITION 65.  

 
PROBLEM.  

509.  For some centripetal force acting towards  C , and with the 
resistance to the motion following the squares of the velocities changed 
in some way, the motion of the body is to be determined on the line 
either accelerating towards, or decelerating  from C.   

 
SOLUTION. 

 
 Let the body be at P and put CP =  x, and the speed at P = v . Then 
the centripetal force at P = p, with the acceleration of gravity put as 1, 
and with the exponent of the resistance equal to q, which letters p and q 
denote some functions of x. Hence the force of resistance is equal to   

q
v . On account of this we have for the ascent : q

vdxpdxdv −−= . For the 

descent indeed there is this equation : q
vdxpdxdv +−= . Of which one 

can be changed into the other by making q negative. Therefore we will 
consider only the one suited for the ascent, which adopts this form :  

pdxdv q
vdx −=+ .  

This is multiplied by ∫ q
dx

e , so that it becomes integrable. But the equation of this integral 

is : [p. 216] ∫ ∫∫ −= pdxeve q
dx

q
dx

, hence :   

∫ ∫∫−−= pdxeev q
dx

q
dx

.  

Let the speed of the body at  A be zero, with  AC = a, and  X  written in place of the 

integral of pdxe q
dx∫  itself is thus taken, so that it vanishes when x made equal to zero.  

Then with a put in place of x [in the limit of the integral; note that Euler does not 
distinguish between the variable in the integration, and the upper value of this variable],  

X becomes A, and hence :  )XA(evXApdxe q
dx

q
dx

−=−=− ∫−∫∫  and .  
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Therefore the time, in which the distance CP is completed, is given by :   

∫ −

∫−

)XA(
dxq

dx
e

2
1

.  

Moreover for the descent, with  A – X written in a similar way ∫ ∫−− pdxe q
dx

, the height 

corresponding to the speed at P is given by :   

)XA(ev q
dx

−= ∫ ,  
and the time, in which the distance PC is completed , is given by :    

∫
−

∫−

)XA(q
dx

e

dx

2
1

.  

Q.E.I. 
 

Corollary 1. 
 

510. The speed at the lower point C is found by making x = 0, in which case X  vanishes 
and we put ∫ q

dx  to disappear. Therefore there arises for the ascent as for the descent  

v = A.  Moreover it is to be noted that A does not have the same value in each case, but 

different values. For it is formed from X, which in the ascent is equal to ∫ ∫ pdxe q
dx

, and 

for the descent truly equal to ∫ ∫− pdxe q
dx

.  

 
Corollary 2. 

 
511. In the descent the body has the maximum speed when v = pq, as indeed it makes  
 dv = 0. [p. 217] Hence the place, in which the speed is a maximum, is determined from 

the equation )XA(epq q
dx

−= ∫ .  
 

Scholium. 
512. In the hypothesis for a force in a uniform medium, the body finally falls through an 
infinite distance to acquire its maximum speed and if,  in the beginning it should 
suddenly be moved to that speed, then that speed is always kept. Here indeed, where  p 
and q are variable quantities, the body can fall for a finite time to acquire the maximum 
speed and is not required to keep that speed, once acquired, unless  pq is always a 
constant quantity, or the density of the medium is proportional to the centripetal force 
(385).  
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PROPOSITION 66.  
 

PROBLEM.  
513.  With the law of the centripetal force pulling towards the centre C given (Fig.44), 
and with the medium resisting in the ratio of the square of the speed, if the speed of the 
body is given that the body acquires on being dropped from any height, to determine the 
density or the exponent of the resistance at individual places.    

 
SOLUTION. 

 
 With some distance CP =  x, and the centripetal force at P 
= p, let CMB be the curve associated with this force, in order 
that any coordinate [called 'applied line' in the original] of 
this curve AB is equal to the height corresponding to the 
speed, that the body dropped from A acquires at C, and which 
curve is therefore given.  Truly the exponent of the resistance  
 sought is equal to q at P. Again, if the distance AC, [p. 218] 
from which the body is dropped, is equal to a,  then AB is a 
certain function of a, that we put as corresponding to the 
value L. Indeed PM is the coordinate of the same curve 
corresponding to the value R, and R is the same function of x 
as L is of a. Moreover from the preceding proposition, it is apparent from the distance of 
the body dropped AC = a,  that the height corresponding to the speed acquired at C is 
equal to A (510). On account of which  L = A and also R = X; for also X is such a 
function of  x, as A is of a ; R therefore must be such a function of x, so that it vanishes 
when x = 0. Since indeed :  

∫∫∫ === ∫−∫−
q
dx

dR
pdxlpdxeR,pdxeX q

dx
q
dx

 and  hence . 

From which, with dx put constant, it is found that  
 

pddRdpdR
pdxdRq −= . Q.E.I.  

[For, from ∫ ∫−= pdxeR q
dx

, written with limits to the integral in the modified form :  

∫ ∫−=
x

pdteR q
dt

0

, we have 

.lnpln)p(q
dt,e,pe dR

dx
dR
dx

dx
dR

pdx
dR q

dt
q
dt

+==== ∫∫−∫− ln and  hence, and 1  On again 

expressing the integral with limits, and differentiating w.r.t. R, with dx kept constant [in 
the limit of the integral], then we have : 

.q ddR.pdRdpdR
dxpdR

pdR
ddR.pdRdpdR

dR
ddR

pdR
dp

q
dx

−
− ==−= or  , ] 
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Corollary 1. 
514. If CMB is a straight line and hence R = ax, then ddR = 0 and dp

pdxq = . If in addition,  

nxp β= , then n
xq = , or the density of the medium is reciprocally proportional to the 

distance from the centre.  
 

Corollary 2. 
515. If  n = 0, or the centripetal force is the same everywhere, then =∝q , and thus the 
density of the medium is zero and thus the resistance vanishes. This is the case of bodies 
descending in a vacuum acted on by absolute uniform forces.   
 

Corollary 3. 
516. If n is a negative number, then q also has a negative value.  
From which it is to be understood that the resistance is to be changed into a propelling 
force. [p. 219] 
 

Scholium 1. 
517. From these the question is easily adapted to resolve ascent, if clearly the height is 
given, to which the body reaches projected with some speed from C.  Indeed with the 
speed set equal to R , in which the distance x is completed, q only needs to be changed 

into its negative, with which done we have : dpdRpddR
pdxdRq −= .  

 
Scholium 2. 

518. Each equation defining q for the ascent as well as for the descent is thus compared, 
so that the same value of q is found, whatever multiples of  p and R are put in place. Yet 
it is not permitted to conclude from these, if q and p are to be determined, that R can have 
a certain variable value; for by necessity the corresponding value of R must be 
determined. Moreover when that assumed value of R does not produce some multiple of 
q, the centripetal force  p according to this is either to be returned or modified. [Thus, the 
functions found must be consistent.]  Moreover when the magnitude of the centripetal 
forces in individual places is given, then the problem is over–determined, if indeed the 
speeds corresponding to the distances are given as you please : for only the ratio of these 
need be proposed. Truly the ratio is consistent with this difficulty,  that we have found q 

from the equation   ∫ ∫−= pdxeR q
dx

by differentiating twice. [p. 220] For the differential 

equation appears broader and to embrace more than the integral.   
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Scholium 3. 
519. It follows naturally from the solution of the problem, how, if the density of the 
medium is given at individual places, or the quantity q determined, then it is required 
instead to find the centripetal force p, with everything given remaining as before.  Indeed 

from this equation : ∫= q
dx

dR
pdxl it can be deduced that ∫= q

dx

ep dx
dR , the value of which 

has been determined, since we have put the selected value of ∫ q
dx  in place, which 

vanishes when x = 0 (510).  
 

PROPOSITION 67.  
 

PROBLEM.  
520.  With the medium resistance in the square ratio of the speed, and with the density of 
the medium given or the exponent of this at individual places given, to determine the 
centripetal force which can be acting , in order that the body released from any height 
towards the centre C (Fig.43), still always takes the same time to arrive there.    

 
SOLUTION. 

 
 The body descends from some point A, and AC = a. The unknown 
quantity CP =  x, and the height corresponding to the speed at P is equal 
to v, the exponent of the resistance at P = q , and the centripetal force at 
the same place is equal to p, which is to be found. Therefore the 

equation )XA(ev q
dx

−= ∫ is established, and the time, in which the 
interval PC is completed, [p. 221]  

= ∫
−

∫
)XA(q

dx
e

dx

2
.  

(509) . X is taken everywhere to be defined thus by ∫ ∫−= pdxeX q
dx

, so 

that it vanishes when x = 0, and A arises from X  by putting x = a. 
Therefore the time to traverse AC is had, if in the integral of  

)XA(q
dx

e

dx

−
∫ 2

 we put x = a or X = A. Truly the resulting expression is to 

be prepared so that neither a nor A is present : which is the case, if ∫
−

∫
)XA(q

dx
e

dx

2
 should 

be a function of a and x or A and X of zero dimension. [Recall that X = pdxe q
dx∫− , and A 

similarly defined, with suitable limits, as above; Euler had established this dimensional 
approach in one of his early papers on isochronous curves.] On account of which the 
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differential by necessity is a function of this kind. Therefore put : P

dX

q
dx

e

dx =
∫ 2

; we have 

for the differential of the time : 
)XA(P

dX
−

, in which A and X maintain the dimension of a 

half  ; hence P, which has no given dimension,  must also have the dimension of a half.  
But neither a nor A can be present in P; for the magnitude of this must depend only on 

the point P, and not on the point  A. On this account, b
XP = and the element of the time 

is 
)XXAX(

bdX
−

, which has the required property. Therefore we have :  
X

bdX

q
dx

e

dx =
∫ 2

, and 

with the integration completed :  ∫
∫

=
q

dx
e

dxXb
2

2 , which must thus be accepted for the 

integral,  as it vanishes by making x = 0. [p. 222] Moreover since ∫ ∫−= pdxeX q
dx

, we 

have 

2

2

2 24
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ∫∫

∫

∫−

q
dx

e

dxpdxeb q
dx

and hence by differentiation we have finally : 

∫
∫

∫
==

q
dx

e

dx
b

q
dx

ep
2

2

2
2 .  

Q.E.I. 
 

Corollary 1. 
521. Since the element of the time is  

)XXAX(
bdX
−

, the time in which the interval PC is 

completed, is equal to the arc of  a circle, of which the versed sine is  X,  with the 
diameter present  A, multiplied by A

b2 . And with the ratio of the periphery of the circle  to 
the diameter put as 1:π , the time for the whole descent through AC = bπ , which is a 
constant not depending on a.  
 

Corollary 2. 
522. Since 

 X .p,eXb
q

dx
e

dx
bdXb

Xdx
bdX

Xdx

q
dx

e

dx q
dx

2

2
4
1

2
22

2  also And  then  and 2
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==== ∫∫

∫

∫

∫
.  
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Corollary 3. 

523. Let the medium have a uniform resistance and thus  q = k; then k
x

ee q
dx

22 =∫ and 

)e(k k
x

q
dx

e

dx 2

2
 12
−

∫
−=∫ . From which is produced :  )e(p k

x

b
k 1 2

2 −= [p. 223]. Therefore 

the centripetal force is equal to zero at C.  
 

Corollary 4. 

524. If q is a constant equal to k; then 222 1 and 122 2

2
)e(X)e(kXb k

x

b
kk

x −−
−=−= .  

Since indeed X becomes A by putting x = a, then 2212

2
)e(A k

a

b
k

−
−=  and  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−==

−−
2222 112

2
)e()e(eAv k

x
k
a

k
a

b
k .  

Corollary 5. 
525. Therefore the speed at the lowest height C corresponds to the height 

2
212

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−
k
a

b
k eA .  

Corollary 6. 
526. The body has its maximum speed when v = pk (511). Therefore :   

2
2

2
222 111

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−−−−
k
x

k
a

k
x

k
x

eeee . 

From which it is found that :  k
a

k
a

k
x

eee
−−−

−= 22 2 , and hence 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= 1222 2k

a
elkax .  

 
Scholium. 

527. If q and k can be taken negative, the law of the centripetal force can be found which 
has the effect that  all the ascents from C can be completed in equal times.[p. 224] 
Indeed this always has the descent location transformed into an ascent by making the 
resistive force negative. In which all the ascents  become isochronous, and the centripetal 
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force is given by : dxep q
dx

b

q
dx

e ∫ ∫
∫−

= 2
22

2
. In the case of a uniform medium 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−
k
x

b
k ep 212 .  

 
 

PROPOSITION 68.  
 

PROBLEM.  
528.  If the centripetal force is in proportion to the distance from the centre C (Fig.45) 
and the medium has a resistance in the simple ratio of the speed, it is required to 
determine the motion of the body as it approaches towards  and as it recedes from the 
centre C.  
[The case of simple harmonic motion, with resistance proportional to the speed.] 

 
SOLUTION. 
 

 Let the distance, at which the centripetal force is equal to the force of 
gravity, be equal to f , and the exponent of the resistance is equal to k. Now 
the body approaches towards the centre C along the straight line AC to the 
centre C, and the height corresponding to the speed of the body at C is equal 
to c. And then with this speed the body recedes from C along the straight line 
CB. First we consider the approach, and we put CP =  x and the height 
corresponding to the speed at P is equal to v. With these in place the 

centripetal force at P = f
x  and the force of the resistance = 

k
v , from which 

this equation arises :  .dv
k

vdx
f

xdx +−=  In which this equation can be made 

homogeneous, by putting hkuv ==  and ; therefore it becomes :   

h
udx

f
xdxuduududv +−== 2 and 2 .  [p. 225] 

By making h
rxdx

f
xdxdrrxxdxr,rxu +−=+= 22 2  2 then , from which arises :   

22
2

fhrhfr
fhrdr

x
dx

−−
=  

Which on integrating, with a constant requiring to be added, and with v and k restored, it 
changes into this :   

kf
f

)kf(xfxfkv
)kf(xfxfkv

fc
x

kc
vx

c
v

82

84
84

22

−

⎟
⎠
⎞

⎜
⎝
⎛=+−

−−−
−+−  
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Moreover if 8k > f, the differential equation should be constructed 
with the help of the quadrature of the circle. [See (441)] Clearly 
putting ,fh βα 4

1
4
1  and ==  and this differential equation is 

obtained :   

βα
α

βα
α

βα +−+−
−

+−
++=+=

rr
dr

rr
drrdr

x
dx

rr
rdr

x
dx

222 2220 .  

The integral of which is :   

∫ +−
++−=

βα
αβα

rr
drxuxulC

2
22

22 . 

For am.
)(rr

dr
22 2 αβ

α
βα

α
−+−

=∫  (Fig. 46), and the tangent of the arc am, 
)(

rat
2αβ

α
−
−= , 

with the radius present ac = 1. Therefore with x
u in place of r, it becomes 

)(x
xuat

2αβ
α
−

−= . 

To determine the constant C , put  x = 0 and cu = , with which done in place of  
am.

)( 2αβ
α
−

 there is obtained :  amb.
)( 2αβ

α
−

. Hence, the equation becomes :  

am.xuxulamb.cl
)()( 22

22 2
αβ

α
αβ

α βα
−−

++−=+ .  

Hence,  c
xuxu)( lbm

222 2 βα
α
αβ +−−= ,  and the arc bm, the tangent of which is bs, is 

equal to xu
)(x

α
αβ

−
− 2

.  

 For the case of receding from the centre C if as before we put CQ = x and the speed at 
Q = v , with u,r,,,k,f,h  and βα keeping the same values as before, we have : 

βα ++
+=

rr
rdr

x
dx

220 .  

From which there is obtained :  

c
xuxu)( lbm

222 2 βα
α
αβ ++−−= , and the tangent of the arc bm , xu

)(xbs α
αβ

+
−=

2

.  

If  kf 8or  2 >> βα , the integration can be shown algebraically ; it becomes :  
 

kf
f

)kf(xfxfkv
)kf(xfxfkv

fc
x

kc
vx

c
v

82

84
84

22

−

⎟
⎠
⎞

⎜
⎝
⎛=++

−++
−−+ .[p. 226] 

  
Moreover there remains the case in which kf 8or  2 == βα , which needs to be handled 
separately. Moreover this equation is found for the approach :  

xkv
x

kv
xkvl

−
− =

44
4 .  

And for receding :  
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xkv
x

kv
xkvl

+
−+ =

44
4 . Q.E.I. 

 
Corollary 1. 

529. In the case, in which  f = 8k, xkv >4  for the approach always, otherwise 

xkv
x
−4

is equal to an imaginary quantity.  Whereby, unless x = 0, it is not possible for v 

= 0, and likewise the speed at C by necessity must be equal to 0. On account of which if 
that is put as a finite c , the beginning of the descent will be imaginary.  
 

Corollary 2. 
530. Moreover in the case f = 8k  from the known equation of the recession, for with v= 0 

it is found that 1
4

−=
kc

xl , and hence e
kcBCx 4==  with e denoting the number, the 

logarithm of which is one. Hence the distance BC is proportional to the speed at C.  
 

Corollary 3. 
531. Therefore because, when the resistance is of such a size that 8 k = f, the body 
approaching C loses all its speed, and with a greater ratio, if 8k < f or the resistance 
becomes greater, then the body loses all its speed on approaching C. [p. 227] 
 

Corollary 4. 
532. Whereby, if either 8k = f  or  8k < f , after arriving at C the body is in perpetual rest,  
and in these cases no receding motion is possible.  But if the resistance is less or 8k > f, 
then the approaching body can have a finite speed at C, which then recedes from C, and 
will move in an oscillatory motion.  
 

Corollary 5. 
533. Moreover if  8k > f, this equation is obtained for the accession : the tangent of the 

arc is xu
)(x

α
αβ

−
− 2

 

c
xuxu)( l

222 2 βα
α
αβ +−−= .  

Hence the beginning of the approaching motion is found by putting u = 0; moreover the 

tangent of this arc is 
f

)fk( −8  

x
fc

f
)fk( l 28 −= .  

For the receding motion similarly the tangent of the arc is 
f

)fk( −8  

x
fc

f
)fk( l 28 −= . 
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Scholium 1. 
534. Hence it considered to follow that the distance BC is always equal to the distance 
AC, as these two equations are similar to each other. But since, if 8k <  f, absolutely 
nothing is given for the recession, and it cannot happen, as if 8k is only a little amount 
greater than  f, the interval of the recession becomes equal to the interval of the accession. 
This difficulty is removed, if we consider a large number of arcs corresponding to the 

same tangent 
f

)fk( −8 , [p. 228] of which one is taken for the accession, and another 

must be taken for the recession. Putting τ=−
f

)fk( 8 , and the smallest arc corresponding 

to the tangent τ is γ and the semi–circumference of the circle is π : the tangent τ of all 
these arcs etc.32 ,,,, γπγπγπγ +++  but not of these etc.2 ,, γπγπ +−+−  Now for 

the recession BC the arc γ must be taken, then .fceBCl BC
fc 2 and 2 τ

γ

τ
γ

−

==  And for 

the accession the arc γπ +− must be taken, and it gives .fceAC 2τ
γπ −

=  The 
remaining arcs give the points, in which the body oscillating about C has speeds 
successively equal to zero.  Since indeed in the first oscillation, the approach distance is 

equal to fce 2τ
γπ −

, the accession interval of the second oscillation is equal to the 

recession interval of the first oscillation and thus fce 2τ
γπ −

. In the third oscillation, the 

access interval is equal to fce 2τ
γπ −−

. And in the oscillation, which is indicated by the 

number  n, the access interval is  fce
)n(

2
2
τ

γπ −−−

. And from this ratio, any of the 
access intervals as well as the recession intervals can be determined.   
 
 

Corollary 6. 
535. Therefore when the oscillations of the body are completed about the centre C, they 
constitute a geometric progression of accession intervals, of which the denominator is 

τ
γ−

e   [p. 229]. And in a like manner the recession intervals constitute a progression  and 
also the whole distance traversed by the individual oscillations.  
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Scholium 2. 
536. Because the differential equation for the descent : h

udx
f

xdxudu +−=2 , and the 

equation h
udx

f
xdxudu −−=2 for the ascent is homogeneous, in each case  u  is equal to  a 

function of x and a of one dimension,  with a denoting the maximum elongation AC or 
BC from C. On account of which in the expression for the time ∫ u

dx  there is no 

dimension present of a and x, and likewise all the times for the ascents as for the descents 
are equal to each other. For indeed the integral of u

dx is a function of a and x of zero 

dimensions, and this expression with x = a is equal to a constant quantity. In a similar 
manner the times of all the descents as far as the point with the maximum speed are equal 
to each other.  For the distance of the points in which the body has the maximum speed, 
is proportional to a or to the maximum elongation from the centre C (528). [p. 230] 
[Thus we have the first exposition of damped S.H.M., with over–, under–, and critically– 
damped motions described, and with the isochronous nature of the motion discussed. As 
Euler has indicated earlier, he does not go into the nature of the force, be it electrical, 
magnetic, or mechanical in origin; instead, everything is related to a uniform gravitational 
force.] 
 

PROPOSITION 69.  
 

THEOREM.  
 

537.  If the centripetal force is as the nth power of the distance from the centre  C 
(Fig.43), and the medium resists in the ratio of the 2m multiple of the speed, truly the 
resistance is proportional to the m

nmmn −+  power of the distance from the centre C, and 

the times of all the descents or ascents in the whole distance described are in the ratio of 
the 2

1 n− power. .   
 

DEMONSTRATION. 
 

 Let AC be the whole interval described either in ascent or descent, and 
it equal a , and any part of this CP = x and the speed of the body at  
P is equal to v . The distance  f is put in place, in which the centripetal 
force is equal to the force of gravity.  From these put in place the 

centripetal force at P = nf

nx , and, with the exponent taken for the 
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resistance m
nmmn

m x
−+1

λ , the force of the resistance is nmmnx

mv
−+λ

. Hence for the descent 

we have this equation :  

nmmnx

mv
nf
dxnxdv −+

− +=
λ

, 

and for the ascent :  

nmmnx

mv
nf
dxnxdv −+

− −=
λ

 

Which equations in short agree between themselves, except that  λ in one has a negative 
value. Now put 1+= nuv , and we have   

nmmnx
dxmmnu

nf
dxnxnduu)n( −+

+−=+
λ

m1 ,  

in which equation u and x put in place a number of the same dimension everywhere. 
Indeed this equation thus must be integrated, in order that by making x = a , u vanishes. 
As on this account the equation of the integral is thus prepared,  in order that a , x, and u 
everywhere [p. 231] constitute a number of the same dimension. From that therefore it is 
found that  u is equal to a function of  a and x of the one dimension n. Consequently v is 
equal to a function of a and x of dimension n + 1. On account of which the time, in which 
the interval PC is traversed, clearly ∫ v

dx , is a function of a and x, which has the 

dimensions 2
1 n− . Therefore the whole time either for the ascent or the descent is equal to 

2
1 n

Aa
−

, where A is a constant quantity made from  f and λ, which remain unchanged. It is 
therefore evident that all of the ascent as well as descent times in the description of the 
whole interval are in the ratio 2

1 n−  to each other. Q.E.D.  
 

 Corollary 1. 
538. If the resistance of the medium is constant, and thus mn + m – n = 0, then m

mn −= 1  

or the centripetal force shall be as the distance raised to the power m
m
−1 . Truly the times 

for the ascents and descents in the intervals traversed are in the ratio of the power m
m

22
21
−
− . 

 
Corollary 2. 

539. If  n = 1 or the centripetal force is in proportion to the distance from the centre C, 
then all the ascent and descent times are equal to each other. [p. 232] 
Truly in this case, since the law of the resistance is proportional to the speed raised to the 
power 2m,  the exponent of the resistance is as the distance from the centre C raised to 
the  power m

m 12 − .  
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Corollary 3. 
540. From this it is apparent, that we have found from the preceding proposition (536), if 
the resistance is proportional to the speeds,  and on account of this, 2

1=m and with a 
uniform medium, all the ascent times as well as the descent times are equal to each other.  
 

 
Corollary 4. 

541. If the centripetal force is constant or n = 0, the  ascent or descent times are in the 
square root ratio of the intervals traversed. Truly the exponent of the resistance is 
proportional to the distance from the centre C. This is now the same case that we have 
presented above. (495).  
 

Scholium. 
542. And with these we conclude this chapter concerning the rectilinear motion of points 
with resistance ; and we move on in a like manner to the division made,  to consider the 
curvilinear motions of bodies in a vacuum acted upon by some kind of absolute forces.  
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CAPUT QUARTUM  

 
DE MOTU RECTILINEO PUNCTI LIBERI 

IN MEDIO RESISTENTE 
[p. 188] 

 
PROPOSITIO 57.  

 
PROBLEMA.  

450.  Dato tempore, quo corpus ex B (Fig. 40) sursum proiectum iterum in B decidit in 
medio resistence in duplicata celeritatum ratione et sollicitante potentia absoluta 
uniformi g, determinare altitudinem BA, ad quam corpus pervenit, ut et celeritatem 
initialem in B finalem post descensum in eodem loco B; nec non tempus ascensus per BA 
et tempus descensus per AB.  
 

SOLUTIO. 
 

Sit datum tempus = t, quod est summa temporum ascensus et descensus per rectam 
BA, et exponens resistentiae = k. Ponatur altitudo BA quaesita = x. Erit tempus ascensus 
per BA  

)e(.A k
x

g
k 12 −=  

(445) atque tempus descensus sequentis ex A in B  
 

⎟
⎠
⎞

⎜
⎝
⎛ −+= )e(el k

x
k
x

g
k 12   

(427). Ex quibus conflatur ista aequatio  

⎟
⎠
⎞

⎜
⎝
⎛ −++−= )e(el)e(.A k

x
k
x

k
x

k
gt 112  

ex qua inveniri potest x. Cognita autem altitudine x dabitur simul et tempus ascensus per 
BA et tempus descensus per AB. Porro data altitudine BA = x erit altitudo generans 
celeritatem in B, qua ascendit, = )e(gk k

x
1−  (445) et altitudo generans celeritatem, qua 

decidit in B, )e(gk k
x−−1  (420). Q.E.I. 
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Corollarium 1.  
 

451. Erit ergo celeritas ascendens in B ad celeritatem descendentem ibidem ut k
x

e 2  ad 1. 
Ex quo apparet tanto magis  de motu amitti, quanto corpus altius ascendat. [p. 189] 

 
 

Scholion 1.  
452. Si fuerit k numerus valde magnus neque altitudo x admodum magna, ut loco 
temporum supra inventas expressiones algebraicas adhibere liceat, erit tempus ascensus = 

gk
xx

gk
xx

g
x

2

2

2406
2 +−  atque tempus descensus =

gk
xx

gk
xx

g
x

2

2

2406
2 ++  (432). Quarum 

temporum summa quia data est, habebitur 
gk

xxxgt 2

2

120
4 +=  quam proxime.  

Scholion 2.  
453. Accuratius autem definietur haec temporum summa magis continuandis seriebus 
tempora ascensus et descensus exprimentibus. Fit scilicet tempus ascensus  

= ++−
gk

xx
gk
xx

g
x

2

2

2406
2 −

gk
xx

3

3

1344
−

gk
xx
4

4

46080
etc.  

et tempus descensus   

= −++
gk

xx
gk
xx

g
x

2

2

2406
2 −

gk
xx

3

3

1344
+

gk
xx
4

4

46080
etc.  

Quamobrem horum temporum summa  

 −+=
gk

xx
g
xt 2

2

120
4 +

gk
xx
4

4

23040
etc.  

Ubi notandum, si tempus detur in minutis secundis et k et x in scruplis pedis Rhenani 
exprimantur, superiorem seriem per 250 esse dividendam.  Ita si tempus t sit μ minotorum 
secondorum, debebit pro t substituti 250μ.  
 
 

Corollarium 2.  
454. Ex superiore aequatione poterit serie invertenda elici x per seriem. Fiet autem  

+−= 215

52

1524 k.
gtggtx −429

94

152 k.
gtg etc. 

et consequenter 

+−= 216

63

4

2

1522 k.
tggtx −426

105

2252 k.
gtg etc. 

 
Corollarium 3. [p. 190] 

455. Differentia inter tempus descensus et tempus ascensus erit ergo 
gk

xx
gk
xx

3

3

6723
−  

quam proxime. Inventa ergo altitudine  x simul et tempus ascensus et tempus descensus 
innotescunt.  
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Corollarium 4.  
456. In serie erit etiam altitudo debita celeritati, qua corpus ascensum inchoat, =   

etc. 3

4

2

32

2462 ++++
k

gx
k

gx
k

gxgx  et altitudo debeta celeritati, qua corpus delabitur, 

= etc. 3

4

2

32

2462 +−+−
k

gx
k

gx
k

gxgx  

Exemplum.  
457. Globus ferreus ex tormento bellico sursum explosus recidebat in terram post 34 
minuta secunda, eratque k = 2250000 scrupulorum pedis Rhenani et 7500

7499=g . 

Habebimus ergo t = 8500 et 4165721
4

,
k
gt = adeoque 

.,,
kk.

gtg
kk.

gtg 00074770 atque  011880 429

94

215

52

152152
==  Fiet igitur 4054391.

k
x = et  

1592108.x =  et tota altitudo x , ad quam globus in aere pervenit, = 4443 ped. Rhen. Sit 
nunc δ numerus minutorum secundorum, quibus descensus longius durat quam ascensus; 

erit 
kk

xx
kk
xx

k
g

3

3

6723
250 −=δ . Est vero 375

527=k
x , ex quo prodit 99130

3
.

kk
xx =  et 

..
kk

xx 0189303

3

672
=  Habebimus ergo 972370250 .

k
g =δ et hinc δ = 5" 50"'. Ex quo 

apparet tempus ascensus fuisse [p. 191] 14" 5"' et tempus descensus  = 19" 55"'. Altitudo 
autem generans celeritatem, qua corpus ascensum inchoavit, reperitur 15542 ped. et 
altitudo debita celeritati, qua delabitur, = 1969 ped. Videatur de his Comment. Tom. II. 
pag.338. 
[Daniel Bernoulli, Dissertatio de actione fluidorum in corpora solida et motu solidorum 
in fluidis. Pars quarta: de motu corporum sursum proiectorum, ubi ad calculum 
revocantur experimenta ab Excellentissimo Domino Gunter cum tormentis instituta. 
Comment. acad. Petrop. 2 (1727), 1729, p. 329-342. Pag. 338 legitur : Tempus totum 
ascensus et descensus 34 min.sec., altitudo, ad quam globus pervenit in aere resistente, 
4550 ped. Angl. (Ped. Angl. continentur 304.79 mm), tempus ascensus in aere resistente 
14.37 min.sec., tempus descensus in aere resistente 19.63 min. sec., altitudo, in quam 
globus eadem vi proiectus in vacuo ascendere potest, 13694 ped. Angl., tempus, quod 
eadem vi proiectus in vacuo in ascensum et descensum impendit, 58 min. sec.] 

 
 
 

Corollarium 5.  
458. Quia altitudo debita celeritati, qua corpus sursum proiicitur,  

)(gx)e(gk
k

x
k
x

k
xk

x
etc.11 3

3

2

2

2462 ++++=−=  
erit tempus ascensus et descensus simul sumtum, si corpus hac celeritate in vacuo sursum 
proiiceretur sola sollicitante vi gravitatis,  
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.gx
k
gxx

k
gxx

k
gxx etc4 3

3

2

2

3224
5 ++++=  

 
Corollarium 6.  

459. Erit ergo summa temporum ascensus et descensus in vacuo ad temporum summam 
in medio resistente ut  
 

etc.1 ad etc.1 4

4

2

2

3

3

2

2

9216048012896
5

4 +−+++++
k

x
k

x
k

x
k
x

k
x )(g   

 
Si scilicet in utroque casu corpus eadem celeritate proiiciatur. 
 

Scholion 3.  
460. In citato Tomo II. Commentar. pag. 340 est Theorema, quo haec tempora in vacuo et 
medio resistente in duplicata celeritatum ratione, ut hic quoque statuimus, inter se 
conferuntur; atque asseritur tempus in vacuo semper esse maius tempore in pleno. At 
vero ex nostra comparatione apparet fieri posse, ut tempus in vacuo etiam minus sit 
tempore in pleno. Nam si fuerit x valde parvum, k vero vehementer magnum, ea tempora 
inter se erunt proxime ut g at 1. [p. 192] Est vero g in medio resistente ob vim gravitatis 
densitate medii minutam semper minor unitate, et hanc ob rem tempus in vacuo minus 
erit his casibus tempore in pleno. Quando vero g quam minime ab unitate differt et x non 
est admodum parvum respectu k, prout in eiaculatione globorum ex tormentis 
evenit,tempus in vacuo utique perpetuo erit maius quam in medio resistente. Deinde si 
fuerit x > k, facile perspicitur dari quoque casus, quibus eventus illi Theoremati futuris sit 
contrarius. In exemplo autem allato corpus celeritate altitudini 15542 ped. debita in vacuo 
sursum proiectum recidet in terram post 63 minuta secunda, cum tamen in aere non 
diutius quam 34" moretur. 
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PROPOSITIO 58.  

 
PROBLEMA.  

461.  Si corpus post quemvis descensum ex O (Fig. 42) reflectatur eaque celeritate, quam 
in descensu est adeptum, iterum recta ascendat, atque hae reflexiones perpetuo, cum in O 
pervenerit, repetantur, quaerendae sunt altitudines OA. OB, OC, etc., quas corpus hoc 
modo successive percurrit in medio resistent uniformi iuxta quadrata celeritatum et 
sollicitatum a potentia uniformi g.   
 

SOLUTIO. 
 

Posito, ut hactenus est factum,  exponente resistentiae = k, sit 
altitudo primo AO = a, eritque celeritati, qua corpus ascensum 
inchoavit, altitudo debito. Erit tempus ascensus per BA  

)e(gk k
a

1−=  (439).  [p. 193] Altitudo vero debita celeritati, qua 

per AO delapsum punctum O attingit, est )e(gk k
a−

−= 1  (420). 
Hac celeritate iam secundum ascensum per OB incipiat, sitque OB 

= z; erit )e(gk)e(gk k
z

k
a

11 −=−
−

. Ex quo prodit  

.z)e(klOB k
a
=−=

−

2  
Altitudo vero debita celeritati, qua in hoc secundo descensu per BO 
delabitur, erit  

,)e(gk
k
a

k
a

k
z

e

)e(gk
−

−
−

−

−=−=
2

11  

hacque celeritate tertium ascensum per OC incipiet. Sit nunc OC = 
z, erit  
 

),e(gk k
z

k
a

k
a

e

)e(gk 1
2

1 −=−

−

−

−
 consequenter z = OC = .kl

k
a

k
a

e

e
−

−

−

−

2

23  

Celeritas vero, quam in descensu per CO acquirit, debita erit altitudini  

.)e(gk
k
a

k
a

k
z

e

)e(gk
−

−
−

−

−=−
23

11  

Hac porro celeritate quartum ascensum per OD incipit, quam altitudinem OD denuo 
vocemus z : erit  

k
a

k
a

k
z

e

)e(gk)e(gk −

−

−

−=−
23

11 et consequenter z = OD = .kl
k
a

k
a

e

e
−

−

−

−

23

34   

Simili modo prodibit  [p. 194] 

altitudo quinta OE = 
k
a

k
a

e

ekl −

−

−

−

34

45  et sexta OF = 
k
a

k
a

e

ekl −

−

−

−

45

56 .  
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Ex quibus concluditur ea altitudo OP, cuius index est n, fore  

= 
21

1

21

1

+−−

+−

−−−

−− =−

−

ne)n(

nne

e)n()n(

e)n(n
k
a

k
a

k
a

k
a

klkl .  

Manifestum igitur est, ad quantam altitudinem corpus in quaque reflexione ex puncto O 
perveniat. Q.E.I. 

Corollarium 1.  
 

462. Ex hac solutione simul perspicitur celeritati, qua in hoc descensu per PO delabitur, 
debitam altitudinem fore  

1

1

1

1

+−

−

−−

− == −

−

nne

)e(gk

e)n(n

)e(gk
k
a

k
a

k
a

k
a

 

Celeritas vero, qua ascensum per OP est adorsum, debita est altitudini  
 

21

1

21

1

+−−

−

−−−

− =−

−

ne)n(

)e(gk

e)n(n

)e(gk
k
a

k
a

k
a

k
a

. 

 
Corollarium 2.  

463. Quia  
),e(klOBkleaOA k

a
k
a −−=== 2et   

erit  
1).-2 k

a
e(klOBOA =+  

Eodemque modo [p. 195] 
etc. 3)-4et  2)-3 k

a
k
a

e(klODOCOBOAe(klOCOBOA =+++=++  
 

Corollarium 3.  
464. Si k est  numerus valde magnus, ut k

a  fere evanescat, erit quam proxime  

etc. 3

43

2

322 111 +−+−= −−−
k

a)n(
k

a)n(
k

a)n(aOP  

Quae series cum sit geomettica, erit a)n(k
akOP 1−+=  quam proxime.  

 
Corollarium 4.  

465. Si altitudo prima OA fuerit infinite magna, reliquae nihilo minus erunt finitae. 
Prodibit enim  

.lkOP,lkOD,lkOC,lkOB n
n

13
4

2
32 −====  
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Corollarium 5.  

466. Et si altitudo quaecunque fuerit = kl A, erit altitudo sequens, ad quam corpus post 
repercussionem e prima pertingere valet, .lk A

A 12 −= Porro altitudo tertia erit 12
23
−
−= A

Alk et 

similiter quarta 23
34

−
−= A

Alk et ea, cuius index est n, erit .lk nA)n(
nnA

21
1
+−−

+−=  

 
Scholion 1.  

467. Possunt etiam loco n numeri negative substitui, tumque invenientur altitidines 
praecedentes in quarum serie prima existit. Sic altitudo, quam  sequitur prima OA = a, 
posito n = 0, erit .kl

k
a

e−
=

2
1  Ex quo apparet, si fuerit 2seu  2 lkae k

a
== , [p. 196] 

altitudinem praecedentem fuisse infinitam. At si fuerit 2>k
a

e , altitudo praecedens ob 
logarithmum quantitatis negativae erit imaginaria, id quod indicat fieri non posse, ut 
altitudo tanta possit assignari, cuius sequens sit haec assumta a.  
 

Scholion 2.  
468. Quod post altitudinem infinitam sequi possit altitudo finita, admirabile quidem 
videtur; sed consideranti, quod corpus in medio resistente ex infinita altitudine delapsum 
acquirat tantum celeritatem (420), ratio huius phaenomeni facile patebit. Hac enim finita 
celeritate ad finitam tantum altitudinem reascendere poterit. Maxima autem celeritas, 
quam corpus in descensu potest adipisci, est gk  . Quare si corpus initio sursum 

proiiciatur celeritate maiore quam gk , haec celeritas ex nullo quamvis magno descensu  
antecedente generari potuit; quemadmodum etiam hoc casu calculus altitudinem 
praecedentem exhibet imaginariae quantitatis.  
 
 

PROPOSITIO 59.  
 

PROBLEMA.  
469.  Resistente medio uniformi in celeritatum ratione simplici et sollicitante potentia 
absoluta uniformi deorsum tendente, determinare corporis recta vel ascendentis vel 
descenditis celeritatem in quovis puncto. [p. 197] 
 

SOLUTIO. 
 

Descendat primo corpus in recta AP (Fig. 39), sitque celeritas eius initialis in A 
debita altitudini c. Ponatur potentia absoluta = g, exponens resistentiae = k atque AP = x 

et altitudo debita celeritati in P = x. His positis erit 
k

vdxgdxdv −= ; est enim vis 

resistentiae 
k
v= . Hinc fit 

vkg
kdvdx

−
= .  
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Fiat 
.kdudx

ududv,uv

ukg
gxdu

ukg
kudu

−−
+−==

==
22 2

 atque 2erit  
 

Integrata hac aequatione prodit  
)vkg(gklkvC)ukg(gklkuCx −−−=−−−= 2222 .  

Posito vero x = 0 fieri debet v = c, ex quo fit ).ckg(gklkcC −−= 22  

Habebimus itaque 
)vkg(
)ckg(gklkvkcx

−
−+−= 222 ,  

ex qua v ope logarithmicae potest deduci. Q. E. Altrum.  
 
 Iam pro ascensu sit celeritas initialis in B (Fig. 40) altitudini c debita et BP = x et 
altitudo celeritati in P debita = v. Quia in ascensu tam potentia absoluta quam resistentiae 

vis retardant, erit 
k

vdxgdxdv −−= . Quae aequatio directe ex priore 
k

vdxdgxdv −=  

deducitur ponendo –g loco g. Quamobrem etiam hoc modo requisitam aequationem 
integralem ex illa derivare licet. Fit igitur g negativo.  
 

.gklkvkcx
)vkg(
)ckg(

+
+−−= 222  Q. E. Altrum. 

Corollarium 1.  
 

470. Si celeritas initialis in descensu fuerit = 0, erit .gklkvx
vkg

kg
−

+−= 22  Ex qua 

[p. 198] aequatione determinantur celeritas corporis ex quacunque altitudine delapsi.  
 

Corollarium 2.  
 

471. Quia vero est )(ll
kg

v
vkg

kg −−=
−

1 ,  

habebitur in serie  

etc. 24

2

32 432
++++=

− kg
v

kkg
vv

kg
v

kg
v

vkg
kgl  

 
Qua substituta prodibit  
 

etc. 4

2

3

2

2 5
3

23
2 ++++=

kkg
vv

kg
v

kg
vv

g
vx  

Si nunc fuerit k numerus valde magnus, erit proxime. quam 
3

2
k
gxx

g
vv −=   
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Corollarium 3.  
 

472. Si fit kgv 2= , prodit =∝x  (Fig. 40). Ex quo apparet corpus ex infinita altitudine 
delapsum maiorem acquirere non posse celeritatem quam kg . Et si fuerit semel 

kgv 2= , corpus motu aequabli esse progressurum; tum vero motum eius retardari, si sit 

kgv 2> .  
Corollarium 4.  

 
473. Si corpus ex B sursum proiiciatur celeritate c , altitudo BA reperietur facto v = 0. 
Prodibit autem  
 

etc. 122 3

2

2 23
2 ++−=+−=

kg
c

kg
cc

g
c

kg
c )(gklkcBA  

Altitudino vero, ex qua corpus descendendo hanc celeritatem acquirere potest, erit  
 

etc. 122 3

2

2 23
2 +++=−−−=

kg
c

kg
cc

g
c

kg
c )(gklkc  

 
Corollarium 5.  

 
474. Si corpus sursum proiiciatur celeritate kg , maxima scilicet, quam descendu 
acquirere potest, erit altitudo, ad quam pertingit, ).l(gk 222 −=  
 
[p. 199] 

PROPOSITIO 60.  
 

PROBLEMA.  
475.  Resistente medio uniformi in ratione simplici celeritatum et sollicitante potentia 
absoluta uniformi, determinare tempus, quo corpus vel  ascendens vel descendens 
spatium quodvis percurrit. 
 

SOLUTIO. 
 

Positis ut ante descensu per AP (Fig. 39), celeritate in A = c  et ea in P = v , exponente 
resistentiae = k et potentia absoluta = g spatioque AP = x , erit  

ukg
kudu

vkg
kdvdx

−−
== 2  

posito vu  posito 2 . Iam dicto tempore per AP = t erit 
ukg
kdu

u
dudt

−
== 2 .  
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Ex qua prodit 
vkg
ckglkt

−
−= 2 .  Q.E.Alterum. 

 Quia ascensus per BP = x  (Fig. 40), cum celeritate initiali c  prodit ponendo –g 
loco g, erit tempus ascensus per BP  

vkg
ckglkt

+
+= 2 . Q.E.Alterum. 

 Problemate vero praecedente definitur v ex dato x. Quare et hic tempus, quo 
spatium quodvis percurritur, poterit cognosci. Q. E. I. 
 

Corollarium 1.  
 

476. Si celeritas initialis, qua corpus descentit, fuerit nulla, erit tempus descensus per 

spatium AP  .lk
vkg

kg
−

= 2  At v definitur ex hac aequatione 

.gklvkx
vkg

kg
−

+−= 22  

[p. 200] 
 

Corollarium 2.  
 

477. Tota altitudo BA, ad quam corpus ex B ascendens pervenire potest, absolvetur 

tempore 
kg

ckglk += 2 .  

Corollarium 3.  
 

478. Si ergo celeritas initialis c  fuerit infinita, erit etiam tempus, quo tota altitudo BA 
percurritur, infinitum, nempe ∝= lk2 .  
 

Scholion 1.  
479. Hoc igitur vehementer differt haec resistentiae hypothesis a priore, quae quadratis 
celeritatum posita erat proportionalis. Nam illo casu corpus infinita celeritate sursum 
proiectum ad summum punctum pertingit tempore finito (444). Hoc vero notandum est 
tempus ∝lk2  esse numerum infinitum infimi ordinis. Ex quo concludi posse videtur, si 
resistentia fuerit in maiore quam simplici ratione celeritatum, tempus ascensus totius 
semper esse finitum, sin autem resistentia sit in simplici vel minore celeritatum ratione, 
tempus ascensus totius esse infinitum, si quidem celeritas initialis est infinite magna.  
 

Scholion 2.  
480. Has duas resistentiae hypotheses ideo fusius pertractandas esse censui, quod eae a 
Neutono aliisque, qui eum secuti sunt, praecipue sint consideratae. Haec quidem posterior 
hypothesis, qua resistentiam celeritatibus proportionalem posuimus, [p. 201] 
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mere mathematica est neque ullum in physicis habere potest usum. Sed quia initio 
putarunt resistentiam fluidorum a tenacitate oriundam celeritatibus esse proportionalem, 
diligentius in huiusmodi motus inquirendum esse existimaverunt. Postmodum tamen, 
cum resistentiam tenacitatis longe aliter se habere intellexissent, hanc tractationem nihilo 
minus retinuerunt. Prior vero, qua resistentia quadratis celeritatum proportionalis est, 
maxime explorari meretur : certum enim est praecipuam fluidorum resistentiam hanc 
tenere rationem. Praeterea etiam haec hypothesis in calculo prae reliquis tantam habet 
praerogativam, ut, quod in aliis hypothesibus minime potest praestari, in hac tamen sola 
calculus non refragetur. Omnia enim fere problemata, quae in vacuo solutionem non 
respuunt, in hac resistentiae hypothesi resolvi possunt. Hanc ob rem in sequentibus istam 
resistentiam potissimum examinabimus, reliquas autem, nisi concinno computo 
quaesitum invenire potest, plerumque negligemus.  
 
 

PROPOSITIO 61.  
 

PROBLEMA.  
481.  Resistat  medium uniformi in ratione quacunque multiplicata celeritatum sitque 
potentia sollicitans uniformis, determinare oportet motum corporis recta vel ascendentis 
vel descendentis. [p. 202] 
 

SOLUTIO. 
 

Consideramus (Fig. 40) primo descensum et ponamus celeritatem in A = c , spatium 

AP = x et celeritatem in P = v . Sit  resistentiae exponens = k et lex resistentiae = mv et 

potentia absoluta = g. His igitur positis erit mm

m

m

m

vgk
dvk

k
dxv dxgdxdv

−
=−= et  . Habemus 

ergo ,x mm

m

vgk
dvk∫ −

=  

ex qua ope quadraturarum v in x determinare potetit. Ponatur tempus, quo spatium AP 
percurritur, = t, erit .dt

vvvgk
dvk

v
dx

mm

m

−
==  Atque  

.t
vvvgk

dvk
mm

m

∫ −
=  

Q.E. Alterum.  
Iam pro ascensu maneat c  celeritas initialis in B, sitque BP = x et celeritas in P = 

v  atque tempus, quo spatium BP percurritur, = t. His positis erit  m

m

k
dxvgdxdv −−= , 

quae aequatio ex illa elicitur ponendo –g loco g. Quo facto erit pro ascensu  
 

∫∫ ++
−=−=

vvvgk
dvk

vgk
dvk

mm

m

mm

m
tx et   

Q.E. Alterum inveniendorum.  
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Corollarium 1.  
482. Si fuerit mm gkc = , corpus hac celeritate descensens motu aequabili feretur. Nam 
perpetuo potentiae absolutae, qua corpus acceleratur, aequalis erit vis resistentiae, qua 
retardatur. [p. 203] 
 

Corollarium 2.  
483. Corpus vero ex quiete delapsum perpetuo accelerabitur neque tamen unquam 
celeritatem acquiret altitudini kg m

1
debitam. Sed haec celeritas est quasi asymtotos, quam, 

sive celerius sive tardius corpus moveatur, affectat.  
 

Scholion 1.  
484. Quia hae inventae aequationes neque integrari possunt neque v vel t in x definiri, 
diutius iis immorari non expedit. Ad alia igitur progredior atque medium resistens 
variabile contemplabor manente potentia absoluta uniformi. Huiusmodi tamen accipiam 
hypothesin, qua aequatio dv determinans fiat homogenea ideoque his difficultatibus non 
sit obnoxia. Deinde potentia absolutam non amplius uniformem, sed variabilem pono seu 
eius loco vim centripetam considero, qua corpus perpetuo ad certum aliquod punctum 
fixum attrahitur. Cum hac quidem primum aliam resistentiam non coniungam, nisi quae 
quadratis celeritatum est proportionalis. Deinde vero cum aliis resistentiae hypothesibus 
eas tantum vires centripetas coniungi convenit, quae integrationem aequationis 
differentialis admittunt.  
 

PROPOSITIO 62.  
 

PROBLEMA.  
485.  Potentia absoluta existente uniformi ex exponente resistentiae 
distantiis a puncto C (Fig. 43) proportionali atque lege resistentiae 
celeritatum ratione quacunque multiplicata, requiritur corpus in recta 
AC ad C vel accedintis vel ab eo recedentis celeritas in quavis loco.  
[p. 204] 

SOLUTIO. 
 

Potentia uniformis ad C urgens sit = g, altitudo debita celeritati loco 
quocunque P = v. Ponatur AC, quae est maxima altitudo, ad quam 
corpus pertingit, = a et CP = x, erit exponens resistentiae ut x; sit is 

xm
1

λ , et lex resistentiae sit mv . His positis erit vis resistentiae = m

m

x
v
λ

, et 

pro ascensu per CA, quo et potentia absoluta et vis resistentiae 
retardant, habebitur ista aequatio  m

m

x
dxvgdxdv

λ
−−= . Descensum hic 

quoque tanquam ascensum consideremus, et quia in descensu vero 
potentia accelerans, resistentia vero retardans est, in hoc ascensu 
substituto contrario modo potentia retardans et resistentia accelerans poni debet (411), ex 
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quo oritur pro descensu haec aequatio m

m

x
dxvgdxdv

λ
+−= . Quae aequatio ex illa derivatur 

faciendo λ negativum, et hanc ob rem alteram tantum aequationem integrari opus est. 
Sumamus aequationem pro descensu, quae erit huiusmodi  

,dxvdxgxdvx mmm =+ λλ  
et ponamus .xzv =  Erit ergo ,xdxxdzdv += ex quo prodibit ista aequatio 

.dxzxdxgxzdxxdzx mmmmm =+++ λλλ 1  [p. 205] 

Quae divisa per )gzz(x mm λλ −−+1  abit in hanc x
dx

gzz
dz

m =
−− λλ

λ ,  

in qua indeterminatae iam sunt separatae. Haec igitur aequatio ita integretur, ut facto x = 
a celeritas evanescat; quo facto ex aequatione integrali celeritas corporis descendentis in 
quovis loco innotescet. Eadem vero ipsa aequatio facto λ negativo inserviet ad celeritates 
in ascensu per CA definiendas. Q.E.I.  
 

Corollarium 1.  
486. Si fuerit m = 1 seu resistentia quadratis celeritatum proportionalis, erit  

x
dx

gz)(
dz =−− λλ

λ
1  atque x

gxv)(
)()( lClx)gz)((l λλ

λ
λ

λ
λ λλ −−

−− =+=−− 1
11 1  substituto 

.zx
v  loco  Quia autem, si x = a, debet esse v = 0, erit 

gx
v)(gx

)()( llalxag)(lC λ
λλ

λ
λ

λ
λ λλ −−

−− +=−−= 1
11  ideoque 1 . Ex qua prodit  

 

( ).xxav )(
g

x

xa
)(

gx −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

−−

−
−

−
λλ

λ

λ
λ

λ
λ

λ
λ

λ
λ

λ
λ 11

1

11

11 .  

 
Corollarium 2.  

487. Si fuerit λ unitate minor, haec aequatio ad aliam formam redigi debet; prodibit 
autem  

.v
a

xxa
)(

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−

−
− λ

λ

λλ
λ

λ
λ

1

11

1  

 
[p. 206] 

Corollarium 3. 
488. Casus, quo λ = 1 seu exponens resistentiae ipsi distantia a puncto C est aequlais, in 
his formulis non continetur, sed ex differerentiali x

dx
g
dz =−  est deducendas. Prodibit 

autem xlC g
z =−  hincque  )xlal(gxv −= .  
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Corollarium 4. 
489. Ex his intelligitur casu m = 1 corporis descendentis celeritatem tam in A quam in C 
fore = 0. Fit enim v = 0 in tribus hisce aequationibus, tam posito x = 0 quam x = a. 
Corpus igitur ex A in C delapsum omnem motum amittet atque in C perpetuo quiescet ob 
resistentiam in eo loco infinite magnam.  
 

Corollarium 5. 
490. Dum igitur corpus rectam AC percurrit, alicubi inter A et C habebit celeritatem 
maximam, quae invenitur ex aequatione differentiali faciendo dv = 0. Fiet autem tum 

gxv λ= , quo valore loco v in integratis aequationibus substituto prodibit  

λ
λ

λ
λ

λ
λ

λ
λ 1

11
 atque −

−−

== axax , si λ > 1. Sin autem  λ < 1, erit ax λ
λ

λ
1

 
−

= . At si λ = 1, erit 

e
axlxla =−=  ideoque 1 , denotante e numerum, cuius logarithmus est unitas. [p. 207] 

 
Scholion 1.  

491. Ex his colligere licet etiam in reliquis resistentiae hypothesibus celeritatem corporis, 
cum ad C pervenerit, esse evanituram. Vis enim resistentiae est m

m

x
v
λ

, quae ergo fit 

infinita, si x = 0. Quare si corpus in C quandam haberet velocitatem, ea a vi resistentiae 
infinita statim in nihilum redigi deberet. Maximam vero in descensu celeritatem habebit, 
qando est mm gxv λ= . Ex quo apparet maximam celetatem esse debitam altitudini 

m gx λ . Sed quia x ignoratur seu locus, quo corpus celerrime descendit, etiam ipsa 
celeritas non potest determinari, nisi per quadraturas curvarum, quarum ope aequatio 
differerentialis construitur.  
 

Corollarium 6. 
492. Pro ascensu ex C in A, si m = 1, celeritates corporis in singulis locis P 

determinabuntur ex hac aequatione ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +

++

−
+ λ

λ

λ
λ

λ
λ

λ
λ

1

11

1 a

xxa
)(

gxv ,  

quae ex illis pro descensu formatur, facto λ negativo, uti oportet.  
 

Corollarium 7. 
493. In ascensu ergo corporis celeritas in C semper est infinita. Facto enim x = 0, quia 

)( 1+λ
λ est unitate maius, denominator evanescit. [p. 208] 

 
Scholion 2.  

494. Perspicium etiam est ex sola contemplatione celeritatem in C esse debere infinitam. 
Nam nisi tanta esset, corpus vim resistentiae in C infinitam superare non posset, sed 
perpetuo in C haerere deberet.  
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PROPOSITIO 63.  
 

THEOREMA.  
495.  Iisdem positis, quae in praecedente propositione, si plura corpora 
ex diversis distantiis ad punctum C (Fig. 43) accedent, erunt tempora, 
quibus eo perveniunt, in duplicata ratione distantiarum.  

 
DEMONSTRATIO. 

 
In solutione praecedentis problematis ad celeritatem in P 
determinandam obtinuimus hanc aequationem 

dxvdxgxdvx mmm =+ λλ  (485). In qua aequatione x et v ubique 
dimensionum numerum constituunt. Eius igitur integralis ita accepta, ut 
posito 0, fiat  == vax  habebit hanc proprietatem, ut x, v, et a ubique 
eundem dimensionum numerum constituant. Ex ea ergo prodibit v aequalis functioni 
cuidam ipsarum a et x, in qua a et x unicam ubique dimensionem constituunt; seu v erit 
functio ex a et x constans unius dimensionis. Quare in elemento temporis per CP, quod 
est 

v
dx , erit ipsarum x, dx et a dimidia demendio, et hanc ob rem tempus per CP 

aequalibitur functioni ex a et x constanti dimidiae dimensionis. Posito ergo  ax = , quo 
[p. 209] casu totum tempus descensus per AC invenitur, habibitur functio ipsius solius a 
dimidiae dimensionis. Quamobrem tempus per AC exprimetur huiusmodi expressione 

aC , in qua C ex quantitibus gm, et  λ constat, non vero pendet ab a. Quia iam a 
denotat altitudinem AC, perspicuum est plurium descensuum tempora esse inter se in 
subduplicata ratione altitudinum percursarum. Q.E.D.  
 

Corollarium 1. 
496. Simili modo intelligitur plurium ascensuum ex C tempora tenere etiam rationem 
altitudinum, ad quas pervenitur, subduplicatam.  
 

Corollarium 2. 
497. In quacunque igitur multiplicata celeritatum ratione medium resistat, dummodo 
potentia absoluta est constans et resistentiae exponens distantiis a C proportionalis, 
tempora vel ascensuum vel descensuum rationem tenent subduplicatam altitudinum.  
 

Scholion 1.  
498. Neque vero ascensus cum descensus comparare licet neque plures ascensus vel 
descensus inter se, in quibus litterae gm, et  λ non eosdem tenent valores. Nam in 
expressione aC  quantitas C in omnibus casibus, qui inter se comparantur, eadem esse 
debet. [p. 210] 
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Scholion 2.  
499. In hac propositione eadem usi sumus methodo varia descensuum ad punctum fixum 
tempora comparandi quam supra in propositionibus 39 (308) et 46 (354). Hoc autem casu 
eo magis huius methodi praestantia cernitur, quia nequidem celeritatem in x determinare 
licebat. Hoc enim solum nobis, perspicere sufficiebat, cuiusmodi functio ipsarum a et x 
futura sit ea expressio, cui v esset aequalis. In sequentibus autem plura specimina egregia 
huius methodi occurrent.  
 
 

PROPOSITIO 64.  
 

PROBLEMA.  
500.  Existente vi centipeta cuicunque potestati distantiarum a centro C 
(Fig. 43) proportionali medioque uniformi resistente in duplicata 
celeritatum ratione, determinare corporis in recta AC moti sive sursum 
sive deorsum in singulis locis P celeritatem.  

 
SOLUTIO. 

 
Sit corpus in P habeatque celeritatem altitudini v debitam. Vocetur AP 
x, et sit vis centripeta ut nx  atque ea distantia, in qua vis centripeta 
aequalis est gravitati, = f. Deinde ponatur exponens resistentiae k. His 
praemissis erit vis absoluta, qua corpus in P sollicitatur,   n

n

f
x= et vis 

resistentiae in hoc loco k
v , existente vi gravitatis = 1. [p. 211] 

Descendat iam corpus ad C et habebit, dum per elementum pP movetur, 
vim centripetam accelerentem atque vim resistentiae retardentem. Quia 
hic autem corpus inverso ex P in p pervenire ponimus crescente x, contrarius harum 
virium actiones statui oportet, seu, quod eodem redit, dx negativum est ponendum, quia 
descensu distantia PC = x minuitur. Prodibit ergo k

vdx
f
x dxdv n

n
+−= . In vero autem 

corporis ascensu per Pp utraque vis erit retardans, ideoque habebitur k
vdx

f
x dxdv n

n
−−= . 

Ex quo perspicitur alteram aequationem ex altera oriri faciendo k negativum. Hanc ob 
rem alterutram tantum aequation integrari opus est. Summus eam pro ascensu 

dxdvdxdv n

n

n

n

f
x

k
vdx

k
vdx

f
x −=+−−= seu  , 

haecque multiplicetur per k
x

e , ut prodeat dx)dv(e n

nk
x

k
x

f
xe

k
vdx −=+ , cuius integralis est  

 

∫−= dxve n

nk
x

k
x

f
xe . Erit ergo ∫−−= dxev n

nk
x

k
x

f
xe .  
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Pro descensu igitur erit ∫
−

−= dxev n

nk
x

k
x

f
xe .  

In utraque vero integratione quantitas constans adiicenda ex eo determinari debet,  
[p. 212] quod corporis moti alicubi celeritas sit data : alioquin enim motus non esset 
determinatus. Q.E.I.  

Corollarium 1. 
501. Perspicitur igitur, si n fuerit numerus integer affirmativus, has formulas fore 
integrabiles. Est enim  

C.  etc. 211 342312 ++−−−−+−= −−−∫ nnnnn xek)n)(n(nxek)n(nxenkxkedxxe k
x

k
x

k
x

k
x

k
x

  

Quae series non sit infinita, quoties n est numerus integer affirmativus.  
 

Corollarium 2. 
502. Sit celeritas in C data et debita altitudini c, erit pro ascensu  

;..)...n)(n(ncev n

k
x

n

n

n

n

n

n

n
k
x

f
ek

f
xk)n(n

f
xnk

f
kx

−+−−
−−±+−+−= −− 12312

1221etc. 1  

quorum signorum ambiguorum superius valet, si  n + 1 fuerit numerus impar, inferius 
vero, si n + 1 fuerit numerus par.  
 Pro descensu autem erit  

,..)...n)(n(ncev n

k
x

n

n

n

n

n

n

n
k
x

f
ek

f
xk)n(n

f
xnk

f
kx 12312

1221-etc. 1 +−−
−−++++= −−  loco C debita 

substituta constante. [p. 213] 
 

Corollarium 3. 

503. Integrale ipsius n

nk
x

f
dxxe  ita acceptum, ut fiat = 0 facto x = 0, ponatur = X. Eritque 

)Xc(ev k
x

−= − , quia facto x = 0 fieri debet v = c. Inservit quidem haec aequatio 
ascensui, sed facto k negativo ad descensum accommodatur.  
 

Corollarium 4. 
504. Cognito X apparebit altitudo CA, ad quam corpus vel ascendere potest, vel ex qua 
delapsum celeritatem acquirit c= . Ex hac enim aequatione X = c radix x dabit 
altitudinem CA.  
 

Corollarium 5. 
505. Ex differentiali aequatione pro descensu  k

vdx
f
x dxdv n

n
+−= apparet alicubi corpus 

habiturum esse celeritatem maximam, antequam ad C pertingit, quae ibi erit, ubi est 

n

n

f
kxv = , si quidem n non est numerus negativum.  
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Corollarium 6. 
506. Detur altitudo CA = a, ex hacque si quaeratur c, oportet eam habere quantitatem, 
quae resultat in X posito a loco x. Sit ea = A, erit pro ascensu )XA(ev k

x
−= − et pro  

[p. 214] descensu )XA(ev k
x

−= . Facto enim x = a debet evanescere v. Iam facto x = 0, 
quo casu etiam fit X = 0 (503), erit v = c = A.  
 

Corollarium 7. 
507. Manifestum est ex hisce, quomodo tempus, quo spatium CP percurritur, 

inveniendum sit. Scilicet pro ascensu erit tempus per CP = ∫ − )XA(
dxe k

x
2  atque pro descensu 

tempus per PC erit = ∫
− )XA(e

dx
k
x

2
.  

 
EXEMPLUM. 

508. Sit vis centripeta pro descensu ut distantia a centro C, quo casu fit n = 1; erit ergo 
pro ascensu  

f
ek

f
k

f
kx k

x

k
x
cev

−

−+−= − 22
. 

Pro descensu vero  

f
ek

f
k

f
kx k

x

k
x
cev

22
−++=  

(502). In descensu maxima celeritas erit, ubi est f
kxv =  (505), qua aequatione cum illa 

coniuncta habebitur k
x

k
x

ekkfe 22 =+ . Erit ergo  

cfk
k

cfk
k lkxe k

x

−−
== 2

2

2

2
et   . 

Haec igitur distantia fit infinita, si 2kcf = , omnio vero imaginaria, si 2kcf > . Sit porro in 
A corporis celeritas = 0, positoque AC = a erit pro ascensu celeritati initiali in C altitudo 
debita  

f
k

f
ke

f
kae k

a
k
a

22
+−= . 

[p. 215] In descensu vero erit celeritati finali in C altitudo debita  

f
k

f
ke

f
kae k

a
k
a

22
+−−=

−−

.  

Ex qua apparet, si fuerit a infinitum, fore celerati ultimae in C altutudinem debitam f
k 2

= .  
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PROPOSITIO 65.  
 

PROBLEMA.  
509.  Existente vi centipeta cuicunque ad C quacunque et motio 
resistente secundum quadrata celeritatum utcunque difformi, 
determinatur motum corporis recta vel accelerentis vel recedentis a C.   

 
SOLUTIO. 

 
Sit corpus in P et  ponatur  CP =  x, et celeritas in P = v . Deinde sit 
vis centipeta in P = p, posita vi gravitas = 1, et exponens resistentia = q, 
quae litterae p et q denotant functiones quascunque ipsius x. Erit ergo 
vis resistentiae =  q

v . Hanc ob rem habebitur pro ascensu 

q
vdxpdxdv −−= . Pro descensu vero haec q

vdxpdxdv +−= . Quarum 

altera in alteram transmutatur facto q negativo. Considerimus igitur 
alterutram tantum ascensui accommodatam, quae induit hanc formam  

pdxdv q
vdx −=+ .  

Multiplicetur haec per ∫ q
dx

e , ut fiat integrabilis. Erit autem aequatio integralis [p. 216] 

∫ ∫∫ −= pdxeve q
dx

q
dx

, ergo  

∫ ∫∫−−= pdxeev q
dx

q
dx

.  

Sit corporis in A, positis AC = a, celeritas nulla, et scribatur X loco integralis ipsius 

pdxe q
dx∫  ita accepti, ut evanescat facto x = 0. Deinde loco x posito a abeat X in A, erit 

)XA(evXApdxe q
dx

q
dx

−=−=− ∫−∫∫  atque .  

Tempus igitur, quo spatium CP absolvitur, est  

∫ −

∫−

)XA(
dxq

dx
e

2
1

.  

Pro descensu erit autem, scripto A – X simili modo ∫ ∫−− pdxe q
dx

, altitudo celeritati in P 

debita  

)XA(ev q
dx

−= ∫ ,  
et tempus, quo spatium PC absolvitur, erit   

∫
−

∫−

)XA(q
dx

e

dx

2
1

.  

Q.E.I. 
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Corollarium 1. 
 

510. Celeritas in puncto infimo C reperiatur facto x = 0, quo casu et X evanescat et 

∫ q
dx evanescere ponamus. Prodibit igitur tam pro ascensu quam pro descensu v = A. 

Notandum autem est A in utroque casu non eundem habere valorem, sed diversum. 

Formatur enim ex X, quod pro ascensu est = ∫ ∫ pdxe q
dx

, pro descensu vero = ∫ ∫− pdxe q
dx

.  

 
Corollarium 2. 

 
511. In descensu maxima habebit corpus celeritatem, quando est v = pq, tum enim fit dv 
= 0. [p. 217] Locus ergo, in quo celeritas est maxima, determinabitur ex ista aequatione 

)XA(ep q
dx

−= ∫q .  
 

Scholion. 
512. In hypothesi tam potentiae quam medii uniformis corpus delapsum spatio demum 
infinito percurso acquirebat maximam suam celeritatem et , si principio ea statim 
promovebatur, eam perpetuo retinebat. Hic vero, ubi p et q sunt quantitaties variables, 
corpus ex quiete delapsum finito tempore maximam celeritatem acquirere potest neque, si 
eam semel habuit, retinere debet, nisi sit pq perpetuo quantitas constans seu medii 
densitas vi centripetae proportionalis (385).  
 

PROPOSITIO 66.  
 

PROBLEMA.  
513.  Data lege vis centripetae ad centrum C (Fig.44) trahentis et medio resistente 
celeritatum ratione, se dentur celeritates corporis, quas ex quibuscunque altitudinibus 
delapsum in C acquirit, determinare densitatem seu resistentiae exponentem in singulis 
locis.   

SOLUTIO. 
 

 Posita quacunque distantia CP =  x, et vis centipeta in P = 
p, sit curva CMB huius  indolis, ut eius applicata quaevis AB 
sit aequalis altitudini debitae celeritati, quam corpus ex A 
delapsum in C acquirit, quae curva igitur data erit. Exponens 
vero resistentiae, qui  quaeritur, sit in P = q. Sit porro 
distantia AC, [p. 218] ex qua corpus delabitur,  =  a, erit AB 
certa quaedam functio ipsius a, quam ponamus L. Eiusdem 
vero curvae applicata PM sit R, eritque R talis functio ipsius 
x, qualis L est ipsius a. Ex praecedente autem propositione 
apparet corporis ex distantia AC = a delapsi altitudinem 
celeritati in C acquisitae debitam fore = A (510). Quamobrem 
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erit L = A atque etiam R = X; est enim quoque X talis functio ipsius x, qualis A est ipsius 
a; R igitur talis esse debet functio ipsius x, ut evanescat facto x = 0. Quoniam vero est  

∫∫∫ === ∫−∫−
q
dx

dR
pdxlpdxeR,pdxeX q

dx
q
dx

et  erit  . 

Ex quo, posito dx constante, elicitur  
 

pddRdpdR
pdxdRq −= . Q.E.I.  

.  
Corollarium 1. 

514. Si fuerit CMB linea recta adeoque R = ax, erit ddR = 0 et dp
pdxq = . Si fit praeterea 

nxp β= , erit n
xq = , seu medii densitas erit distantiis a centro reciproce proportionalis.  

 
Corollarium 2. 

515. Si fuerit n = 0 seu vis centripeta ubique eadem, erit =∝q , ideoque medii densitas 
nulla et ipsa resistentia evanescens. Hicque est casus corporis in vacuo descendentis a 
potentia absoluta uniformi sollicitati.  

 
Corollarium 3. 

516. Si fuerit n numerus negativus, habebit q quoque valorem negativum.  
Ex quo cognoscitur resistantiam transmutandam esse in vim propellentem. [p. 219] 
 

Scholion 1. 
517. Ex hisce facile quoque resolvitur eadem quaestio ad ascensum accommodata, si 
nimirum detur altitudo, ad quam corpus ex C quacunque celeritate proiectum pertingit. 
Posita enim celeritate = R , qua spatium x absolvitur, q tantummodo in sui negativum 

transmutari debebit, quo facto habebitur dpdRpddR
pdxdRq −= .  

 
Scholion 2. 

518. Utraque aequatio definiens q tam pro ascensu quam pro descensu ita est comparata, 
ut idem valor ipsius q inveniatur, quaecunque multipla loco p et R accipiantur. Neque 
tamen ex his concludere licet, si determinatae sint q et p, R vagum quendam habere posse 
valorem; sed necessario debebit esse determinatus. Quo autem ille ipse valor ipsius R, qui 
est assumtus, prodeat, non vero eius quoddam multiplum, vis centripeta p ad hoc est vel 
remittenda vel intendenda. Quando autem vis centripetae in singulis locis quantitas ipsa 
datur, problema erit plus quam determinatum, si quidem celeritates quibusvis distantiiis 
respondentes dentur : sed duntaxat earum ratio proposita esse debet. Ratio vero 

difficultatis in hoc consistit, quod invenimus q ex aequatione    ∫ ∫−= pdxeR q
dx

bis 

differentia. [p. 220] Differenta enim aequatio latius patet plusque in se complectitur quam 
integralis.  
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Scholion 3. 
519. Ex solutione problematis sponte sequitur, quomodo, si data fuerit medii densitas in 
singulis locis seu quantitas q, inveniri oporteat vim centripetam p, reliquis iisdem quibus 

ante manentibus datis. Ex hac enim aequatione ∫= q
dx

dR
pdxl dedecetur ∫= q

dx

ep dx
dR , qui 

valor est determatus, quia ∫ q
dx ita sumtum ponimus, ut evanescat facto x = 0 (510).  

 
PROPOSITIO 67.  

 
PROBLEMA.  

520.  Resistente medio in duplicata celeritatum ratione dataque eius densitate seu 
exponentiae in singulis locis, determinare vim centripetam, quae faciat, ut corpus, ex 
quacunque altitudine ad centrum C (Fig.43) delabatur, perpetuo tamen eodem tempore 
eo perveniat .   

 
SOLUTIO. 

 
 Descendat corpus ex puncta quocunque A, sitque AC = a. Vocetur indeterminata  CP 
=  x, et ponatur altitudo celeritati in P debita = v, exponens resistentiae in P = q et vis 

centripeta ibidem = p, quae est invenienda. Habebitur igitur )XA(ev q
dx

−= ∫ et tempus, 
quo spatium PC absolvitur, [p. 221]  

= ∫
−

∫
)XA(q

dx
e

dx

2
.  

(509) . Ubi est ∫ ∫−= pdxeX q
dx

ita acceptum, ut evanescat posito x = 0, et A oritur ex X 

posito x = a. Totum igitur tempus per AC habebitur, si in integrali ipsius ∫
−

∫
)XA(q

dx
e

dx

2
 

ponatur x = a vel X = A. Expressio vero resultans ita esse debebit comparata, ut in ea 
omnino non insit a vel A : quod obtinetur, si ∫

−
∫

)XA(q
dx

e

dx

2
 fuerit functio ipsarum a et x 

vel A et X nullius dimensions. Quamobrem et differentialis huiusmodi sit functio necesse 
est. Ponatur igitur P

dX

q
dx

e

dx =
∫ 2

; habebimus pro differentiali temporis 
)XA(P

dX
−

, in quo A 

et X dimensionem obtinent dimidiam; P ergo, quo nulla adsit dimensio, quoque dimediam 
dimidiam dimensionem haberer debebit. Sed in P non inesse potest a vel A; eius enim 
quantitas a solo puncto P pendere debet, non a puncto A. Hanc ob rem erit b

XP = et 

elementum temporis =
)XXAX(

bdX
−

, quod requisitam habet proprietatem. Erit igitur 
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X
bdX

q
dx

e

dx =
∫ 2

, et integratione peracta ∫
∫

=
q

dx
e

dxXb
2

2 , quod integrale ita esse debet 

sumtum, ut evanescat facto x = 0. [p. 222] Quia autem est ∫ ∫−= pdxeX q
dx

, habebitur 
2

2

2 24
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ∫∫

∫

∫−

q
dx

e

dxpdxeb q
dx

et hinc differentiando tandem ∫
∫

∫
==

q
dx

e

dx
b

q
dx

ep
2

2

2
2 .  

Q.E.I. 
 

Corollarium 1. 
521. Quia elementum temporis est 

)XXAX(
bdX
−

, erit tempus, quo spatium PC absolvitur, 

= arcui circuli, cuius sinus versus est X, existente diametro = A, ducto in A
b2 . Et posita 

ratione peripheriae ad diametrum 1:π , erit tempus totius descensus per AC = bπ , quod 
est constans neque ab a pendens.  
 

Corollarium 2. 

522. Quia est  X .p,eXb
q

dx
e

dx
bdXb

Xdx
bdX

Xdx

q
dx

e

dx q
dx

2

2
4
1

2
22

2  Estque erit  et  2
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==== ∫∫

∫

∫

∫
.  

 
 

Corollarium 3. 
523. Sit medium resistens uniforme et ideo q = k; erit k

x
q

dx

ee 22 =∫ et )e(k k
x

q
dx

e

dx 2 12
2

−

−=∫
∫

. 

Ex quo prodibit )e(p k
x

b
k 1 2

2 −= [p. 223]. Vis igitur centripeta in C erit = 0.  

 
Corollarium 4. 

524. Si q est constans et = k; erit 22
2

2
2 1et  122 )e(X)e(kXb k

x
k
x

b
k −−

−=−= .  

Quia vero X abit in A posito x = a, erit 22
2

2
1 )e(A k

a

b
k −

−=  atque 

( )22 22
2

2
11 )e()e(eAv k

x
k
a

k
a

b
k −−

−−−== .  

 
Corollarium 5. 

525. In infimo igitur loco C altitudo celeritati debita erit ( )22
2

2
1 k

a
eA

b
k −

−== .  
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Corollarium 6. 
526. Maximam habebit corpus celeritatem, ubi est v = pk (511). Erit ergo  

( ) ( ) ( )22
2222 111 k

x
k
a

k
x

k
x

eeee
−−−−

−−−=− . 

Ex quo reperitur k
a

k
a

k
x

eee
−−−

−= 22 2  hincque  
( )1222 2 −−= k

a
elkax .  

 
Scholion. 

527. Si q et k accipiantur negative, invenitur lex vis centripetae, quae efficit, ut omnes 
ascensus ex C facti absolvantur aequalibus temporibus. [p. 224] 
Hoc enim semper locum habet descensum in ascensum transmutari vi resistentiae 
negativa facta. Quo igitur omnes ascensus fiant isochroni, erit  
 

dxep q
dx

b

q
dx

e ∫ ∫
∫−

= 2
22

2
.  

In casuque medii uniformis erit ( )k
x

ep
b
k 2

2 1
−

−= .  

 
PROPOSITIO 68.  

 
PROBLEMA.  

528.  Si vis centripeta sit distantiis a centro C (Fig.45)proportionalis et medium uniforme 
resistat in simplice celeritatum ratione, oportet determinari motum corporis tam recta 
accedintis ad centum C quam recedentis ab eo.  

 
SOLUTIO. 

 
 Sit distantia, in qua vis centripeta aequalis est vi gravitatis, = f et 
exponens resistentiae = k. Iam accedat corpus in recta AC ad centrum C, et 
ponatur altitudo celeritati, quam C habebit, debita = c. Hacque celeritate 
tum ultra C in recta CB recedat a C. Consideremus primo accessum, et 
ponamus CP =  x et celeritati in P altitudinem debitam = v. His positis erit 

vis centripeta in P = f
x  et vis resistentiae = 

k
v  ; ex quibus oritur ista 

aequatio .dv
k

vdx
f

xdx +−=  Quo haec aequatio fiat homogenea, ponatur 

hkuv == et  ; erit ergo h
udx

f
xdxuduududv +−== 2et  2 .  [p. 225] 

Fiat h
rxdx

f
xdxdrrxxdxr,rxu +−=+= 22 2  2erit  , ex qua oritur  

22
2

fhrhfr
fhrdr

x
dx

−−
=  
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Quae integrata cum debita adiecta constante et restitutis v et k, abit in 
hanc  

kf
f

)kf(xfxfkv
)kf(xfxfkv

fc
x

kc
vx

c
v

82

84
84

22

−

⎟
⎠
⎞

⎜
⎝
⎛=+−

−−−
−+−  

 
Si autem 8k > f, aequatio differentialis ope circuli quadraturae debet 
construi. Ponatur scilicet ,fh βα 4

1
4
1 et  ==  et habebitur ista aequatio 

differentialis  

βα
α

βα
α

βα +−+−
−

+−
++=+=

rr
dr

rr
drrdr

x
dx

rr
rdr

x
dx

222 2220 .  

Cuius integralis est  

∫ +−
++−=

βα
αβα

rr
drxuxulC

2
22

22 . 

Est vero am.
)(rr

dr
22 2 αβ

α
βα

α
−+−

=∫  (Fig. 46), arcusque am tangens 
)(

rat
2αβ

α
−
−= , 

existente radio ac = 1. Posito ergo x
u loco r, erit 

)(x
xuat

2αβ
α
−

−= . Ad constantem C 

determinandam ponatur x = 0 et cu = , quo facto loco am.
)( 2αβ

α
−

 habebitur 

amb.
)( 2αβ

α
−

. Erit ergo am.xuxulamb.cl
)()( 22

22 2
αβ

α
αβ

α βα
−−

++−=+ .  

Unde fit c
xuxu)( lbm

222 2 βα
α
αβ +−−= ,  

estque bm arcus, cuius tangens bs est = xu
)(x

α
αβ

−
− 2

.  

 Pro recessu a centro C si ponatur ut ante CQ = x et celeritas in Q = v ,retinentibus 
u,r,,,k,f,h et  βα eosdem quos ante valores, habebitur 

βα ++
+=

rr
rdr

x
dx

220 .  

Ex qua obtinebitur  

c
xuxu)( lbm

222 2 βα
α
αβ ++−−= , estque arcus bm tangens xu

)(xbs α
αβ

+
−=

2

.  

Si fuerit kf 8seu  2 >> βα , poterit integratio algebraice exhiberi; erit  
 

kf
f

)kf(xfxfkv
)kf(xfxfkv

fc
x

kc
vx

c
v

82

84
84

22

−

⎟
⎠
⎞

⎜
⎝
⎛=++

−++
−−+ .[p. 226] 
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Restat autem casus quo kf 8seu  2 == βα , qui seorsim pertractari debet. Invenitur 

autem pro accessu haec aequatio 
xkv

x
kv

xkvl
−

− =
44

4 . Atque pro recessu ista 

xkv
x

kv
xkvl

+
−+ =

44
4 .  

Q.E.I. 
 

Corollarium 1. 
529. In casu ergo, quo f = 8k, semper pro accessu esse debet xkv >4 , alioquin 

xkv
x
−4

aequaretur quantitati imaginariae. Quare, nisi x = 0, non poterit esse v = 0, atque 

ideo celeritas in C necessario debet esse = 0. Quamobrem si ea ponitur finita c , initium 
descensus erit imaginarium.  
 

Corollarium 2. 
530. In autem casu f = 8k recessus ex aequatione cognoscitur; facto enim v= 0 invenitur 

1
4

−=
kc

xl , hincque e
kcBCx 4==  denotante e numerum, cuius logarithmus est unitas. 

Ergo distantia BC est proportionalis celeriti in C.  
 

Corollarium 3. 
531. Quia igitur, quando resistentia tanta est, ut sit 8f = k, corpus in accessu ad C omnem 
amittit celeritatem, multo maiore ratione, si  8k < f seu resistentia adhuc maior fuerit, 
corpus ad C accedens omnem celeritatem amittet. [p. 227] 
 

Corollarium 4. 
532. Quare, si vel 8k = f vel  8k < f , corpus post accessum ad C in C perpetuo quiescet, 
atque his casibus nullus recessus sequi poterit. At si resistancia fuerit minor seu 8k > f, 
tum corpus accedens in C finitam celeritatem habere poterit, qua deinde a C recedet, 
atque motu oscillatorio movebitur.  
 

Corollarium 5. 
533. Sin autem 8k > f, pro accessu haec habetur aequatio : arcus cuius tangens est 

xu
)(x

α
αβ

−
− 2

 

c
xuxu)( l

222 2 βα
α
αβ +−−= .  

Unde initium accessus A invenitur ponendo u = 0; prodit autem arcus cuius tangens est 

f
)fk( −8  

x
fc

f
)fk( l 28 −= .  
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Pro recessu vero similiter invenitur arcus cuius tangens est 
f

)fk( −8  

x
fc

f
)fk( l 28 −= . 

 
Scholion 1. 

534. Hinc sequi videtur distantiam BC semper aequalem esse distantiae AC, quia hae 
duae aequationes inter se congruunt. At cum,si 8k <  f, nullus omnino detur recessus, fieri 
non potest, ut, si 8k aliquantulum tantum maius fuerit quam f, spatium recessus aequale 
fiat spatio accessus. Difficultas haec tollitur, si attendamus innumerabiles arcus eidem 

tangenti 
f

)fk( −8 respondere, [p. 228] quorum alius pro accessu, alius pro recessu accipi 

debet. Ponatur τ=−
f

)fk( 8 , et minimus arcus tangenti τ respondens sit γ et 

semipheripheria circuli π : erit τ tangens omnium horum arcuum 
etc.32 ,,,, γπγπγπγ +++  nec non horum etc.2 ,, γπγπ +−+−  Pro recessu nunc BC 

sumi debet arcus γ, erit .fceBCl BC
fc 2 atque 2

τ
γ

τ
γ −

==  Atque pro accessu sumi debet 

arcus γπ +− , fitque .fceAC 2τ
γπ −

=  Reliqui arcus dant puncta, in quibus corpus circa 
C oscillando successive habet celeritatem = 0. Cum igitur in prima oscillatione sit 

spatium accessus = fce 2τ
γπ −

, erit spatium accessus secundae oscillationis aequale spatio 

recessus in prima oscillatione atque ideo fce 2τ
γπ −

. In tertia oscillatione erit spatium 

accessus = fce 2τ
γπ −−

. Atque in oscillatione, quae numero n indicatur, est spatium 

accessus fce
)n(

2
2
τ

γπ −−−

. Hacque ratione cuiuscunque oscillationis tam spatium accessus 
quam spatium recessus poterit determinari.  
 
 

Corollarium 6. 
535. Quando igitur corpus oscillationes absolvit circa centrum C, constituent spatia 

accessus progressionem geometricam, [p. 229] cuius denominator est τ
γ−

e . Similemque 
progressionem constituunt spatia recessus atque etiam integra spatia singulis 
oscillationibus percursa.  
 

Scholion 2. 
536. Quia aequatio differentialis h

udx
f

xdxudu +−=2  pro descensu, et aequatio 

h
udx

f
xdxudu −−=2 pro ascensu est homogenea, erit in utroque casu u = functioni ipsarum 

x et a unius dimensionis, denotante a maximam a centro C elongationem AC aut BC. 
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Quamobrem in temporis expressione ∫ u

dx  nulla inerit dimensio ipsarum a et x, et ideo 

omnia tempora tam ascensuum quam descensuum erunt inter se aequalia. Integrale enim 
ipsius u

dx erit functio ipsarum a et x nullius dimensionis, haecque expressio posito x = a 

erit aequalis quantitati constanti. Simili modo erunt omnium descensuum tempora usque 
ad punctum maxima celeritatis inter se aequalis. Distantia enim puncti in quo corpus 
maximum habet celeritatem, proportionalis est ipsa a seu maximae elongationi a centro C 
(528). [p. 230] 
 

PROPOSITIO 69.  
 

THEOREMA.  
537.  Si fuerit vis centripeta ut potestas distantiae a centro C (Fig.43) cuius expones ist n, 
et medium resistat in ratione 2m –multiplicata celeritatum, exponens vero resistentiae sit 
proportionalis distantiarum a centro C potestati exponentis m

nmmn −+ , erunt plurium 

descensuum vel ascensuum tempora in spatiurum totorum descriptorum ratione 2
1 n− —

multiplicata.   
 

DEMONSTRATIO. 
 

 Sit AC spatium totum vel ascensu vel descensu descriptum = a eiusque portio 
quaecunque CP = x et celeritas corporis in P= v . Ponatur distantia f, in qua vis 

centripeta aequalis est vi gravitatis. His positis erit vis centripeta in P = n

n

f
x , et, sumto pro 

resistentiae exponente m
nmmn

m x
−+1

λ , erit vis resistentiae nmmn

m

x
v

−+λ
. Hinc pro descensu 

habebitur ista aequatio  

nmmn

m

n

n

x
v

f
dxxdv −++= −

λ
, 

pro ascensu vero  
 

nmmn

m

n

n

x
v

f
dxxdv −+−= −

λ
 

 
Quae aequationes inter se prorsus conveniunt, nisi quod λ in altera negativum habeat 
Ponatur nunc 1+= nuv , et habebitur   

nmmnx
dxmmnu

nf
dxnxnduu)n( −+

+−=+
λ

m1 ,  

in qua aequatione u et x eundem ubique dimensionum numerum constituunt. Haec vero 
aequatio ita debet integrari, ut facto x = a evanescat u. Quam ob rem aequatio integralis 
ita erit comparato, ut a , x, et u ubique [p. 231] eundem constituant dimensionum 
numerum. Ex ea igitur reperietur u aequalis functioni ipsarum a et x unius dimensionis. 
Consequenter aequabitur v functioni ipsarum a et x dimensionum n + 1. Quocirca tempus, 
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quo spatium PC percurritur, nempe ∫ v

dx , erit functio ipsarum a et x, quae habebit 

2
1 n− dimensions. Totum ergo tempus vel ascensus vel descensus erit 2

1 n
Aa

−

= , ubi A est 
quantitas constans ex literas f et λ, quae immutantae manent. Perspicuum igitur est omnes 
tam ascensus quam descensus esse inter se in totorum spatiorum descriptorum ratione 

2
1 n− —multiplicata.  Q.E.D.  
 

 Corollarium 1. 
538. Si medium resistens sit uniforme, ideoque mn + m – n = 0, erit m

mn −= 1  seu vis 

centripeta ut distantia elevata ad m
m
−1 . Tempora vero vel ascensuum vel descensuum 

erunt in spatiorum percursorum ratione m
m

22
21
−
− —multiplicata. 

 
Corollarium 2. 

539. Si fuerit n = 1 seu vis centripeta distantiis a centro C proportionalis, erunt omnia 
tempora tam ascensuum quam descensuum inter se aequalia. [p. 232] 
Hoc vero casu cum resistentiae lex sit celeritatum potestas exponentis 2m, erit resistantiae 
exponens ut distantia a centro C elevata ad m

m 12 − .  

 
Corollarium 3. 

540. Ex hoc patet, quod ex praecedente propositione invenimus (536), si resistentia sit 
celeritatibus proportionalis et hanc ob rem 2

1=m et medium uniforme, omnia tempora 
tam ascensuum quam descensuum fore inter se aequalia.  
 

Corollarium 4. 
541. Si vis centripeta fuerit constans seu n = 0, erunt tempora vel ascensuum vel 
descensuum in subduplicata spatiorum percursorum ratione. Exponens vero resistentiae 
fit distantiis a centro C proportionalis. Eundem hunc casum iam exposuimus supra (495).  
 

Scholion. 
542. Hisce concludimus hoc Caput de motu puncti rectilineo in medio resistente; atque 
iuxta divisionem factam progredimur ad motus curvilineos in vacuo corporum a 
quibuscunque potentiis absolutis sollicitatorum.  
 
 


