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CHAPTER THREE Continued.  

 
CONCERNING THE RECTILINEAR MOTION  

OF A FREE POINT  
ACTED ON BY ABSOLUTE FORCES 

[p. 115 ] 
 

PROPOSITION 35.  
 

PROBLEM.  
286.  If the centripetal force is inversely proportional to the square of the distance from 
the centre C (Fig.28) and the body falls from A as far as C, the time is to be found in 
which the body traverses any portion of this distance AC.  

 
SOLUTION.  

 By keeping AC =  a and the distance, in which the centripetal force of gravity is equal 
to  f, and CP = y  and the speed at P corresponds to the height v. Therefore, on account of 
n = – 2 , by Prop. 32 (264),  
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Therefore the element of the time is given by :   
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Consequently, the time to traverse PC is given by : 
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Whereby with the semi-circle AMC described on AC, and with 

the ordinate PM drawn, then  CM = ∫ − )( 2
2
1

yay

ady
and PM = )( 2yay− .  

[Taking C as the origin, PM = x, and PM = y, then the equation of the circle is x2 = ay – 
y2; the above integral change follows by elementary means as 

adyyaydydy 2
1

2
1 )2( +−−= , etc. Finally, the arc length 

222 )/(1()( dxdydxdydxds +=+= and again the result follows by elementary means 
on finding dy/dx and simplifying.]   
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Whereby the time for to travel the distance is given by : CP = )( PMCMf
a − , and from 

this, the time for the total descent through  AC is equal to f
aAMC .  Therefore the time in 

which the part AP is completed is )( PMAMf
a + . Q. E. I.   

 
Corollary 1.  

287. Therefore, on denoting the ratio of the diameter of the circle to the circumference by  

1 : π then AMC = πa2
1 , then the time of descent through AC = f

aa
2

π . From which it is 

understood that the times of  descent to C of most falling bodies  are in the ratio of the 
distances raised to the 3/2 power [i. e. those under an inverse square law, which obey 
Kepler's Third Law]. [p. 116] 
 
 

Corollary 2.  
288. And thus bodies fall in times to different centres of force of this kind, which are in 
the ratio composed from the product of the three on two power of the distances and 
inversely as the square root of the effectiveness. For the effectiveness varies directly as 
the square of the distance  f.  
[Recall that the effectiveness for gravitational forces is the size of the central attracting 
mass, such as the sun, etc.] 
 

Scholium.  
289. If the centripetal force varies inversely as the cube of the distance, then  n = - 3 and 

, Therefore . 2
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⎛=  and the time to cross the distance CP 

is equal to :                   ∫
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Moreover, in the quadrant of the circle, PM = )( 22 ya − ; the time in which CP is 

completed is therefore ( )PMAC
ff

a −.2 , and the time in which the whole distance AC is 

traversed is 
ff

a
ff

a AC 22 2
or  . . Consequently the time in which the part AP is traversed, 

[on subtracting,] is equal to
ff

PMAC 2. .  Therefore in this case the time can be shown 

algebraically, and that shall also be these cases in which n is the terminus of this series  
etc.,,, 9

11
7
9

5
7

3
5 −−−−  Which moreover at least shall be the times for the whole descents 

through AC , which we are about to investigate.  
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PROPOSITION 36.  

 
PROBLEM.  

290.  To determine the times of descent through the distance AC to the centre of the force 
C (Fig. 28),if the centripetal force is proportional to the reciprocal of the distances 
considered, and the exponent of this distance is 12

12
−
+

m
m , with the number m denoting a 

whole positive number. [p. 117] 
 

SOLUTION.  
With a, f, y, and v retaining the same values as above, then let 12
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and thus the time taken is given by : 
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from which with y = 0 put in place the integral vanishes, as required. From which 
product, if  y = a is put in place, then the time sought for the whole descent through AC 

is produced. Put  dzzdyzybazy
m

mmm m 2
32
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2
12  and then , and 
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which on substitution, the integral becomes  
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In order to evaluate ( )∫ −

−
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, put b – z = u2, then  z = b – u2 and  dz = -2udu  and thus  
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which quantity must vanish when the factor y or z = 0, i. e.  u2 = b, then the constant is 
given by [p. 118] 
:   
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Moreover since the time for the whole descent arises when  y = a or z = b, i. e. u = 0, 

then only the constant quantity C remains for the value of the integral of ( )zb
dzzm

−

−1
, which 

with a restored in place of 2
1

2
−m

b  is equal to : 
)7.3.2.1
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3.1

)1( etc.1(2 +
−−−−−− −+− mmmmmma . Therefore the whole time of the descent 

through AC is equal to the product of fm
m

m

m
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a )12(2
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  by this series  

etc.1 7.5.2.1
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+
−−−−−− −+− mmmmmm , the sum of which is made finite when the 

amount  m is a positive integer. Therefore in these cases the time can be shown by a finite 
algebraic expression. Q. E. I.  
 

Corollary 1.  
291. Let m = 1, in which case n = - 3, and the series is equal to 1; therefore the time of 

descent through AC arises equal to 
ff

a

f

a f 2
2

2

2
2 = , as has been found above (289).  

 
Corollary 2.  

292. Let m = 2, in which case  n = 3
5−  , and the value of the series is 3

2 , and the time of 

the whole descent is equal to .6.
3
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a  But if  m = 3, then n = 3
7−  ,  the series is  5

4
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2 . , 

and the time for the descent is .10
5
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a  [p. 119] In the same manner, if  m = 4, then 

n = 7
9− , and the time arises : .14
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Corollary 3.  

293. From these, the value of the sum of the general series is  gathered to be equal 

to .)12...(7.5.3
)22...(6.4.2

−
−

m
m  Therefore the time of descent in general is given by : 
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If indeed  n = 12
12

−
−−

m
m  or  m = 12

1
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−

n
n , where m is a positive integer.  

 
Corollary 4.  

294. Therefore with the successive positive values 1, 2, 3, 4 etc. put in place for m, the 
following values of the series constitute a progression etc.,,,,1 7.5.3

6.4.2
5.3
4.2

3
2  in which it is 

conceded that circle quadrature can be shown from the intermediate term. For if m = 2
1 , 

the corresponding terminus [i. e. limit] is found to be 2
π , with 1 : π  denoting the ratio of 

the diameter to the circumference, if m = 2
3 ,  the corresponding terminus is 22

1 .π , and 

thus again if m denotes .etc,, 2
9

2
7

2
5 . these terms arise :  etc.,, 2.8.6.4.2

.7.5.3.1
2.6.4.2

.5.3.1
2.4.2

.3.1 πππ  

 [Note initially that since m is no longer a positive integer, the series for the descent 
time does not end, and the finite product for the finite sum becomes an infinite product 
for an infinite sum. The Wallis infinite product was well known to Euler, and the relevant 

form can be written here as : 2..11.9.7.5.3.1
....10.8.6.4.2 π= . We will digress a little and examine a 

formula in E019 : 'De Progressionibus Transcentibus, seu quarum termini generales 
algebraice dari nequeunt.', or Concerning transcendental progressions, or those for which 
the general terms cannot be given algebraically,   in which Euler sets out his ideas, most 
of which relate to the beta functions B(m, n), which can be viewed as generalised 
binomial coefficients turned into functions either of real or complex variables; a 
translation of this paper has been given by Stacy G. Langton, which is available from the 
Euler Archive. Later we will evaluate Euler's integrals using the properties of Beta and 
Gamma functions, which indicate that there may be a discrepancy by a factor of ½ in 
Euler's values. 
 In the above paper, Euler considers initially the following general infinite product, 
from which the product for n = 2

1  above can be derived as a special case : 

etc.,)(  
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n which he considers to be useful for interpolating 

between integer values. There was no thought of convergence or divergence in these 
days. Thus, on setting n = 2

1 , he finds that (and we include the working as it seems 
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interesting) : 

product.  Wallis with thegidentifyinon  ,etc

etcetc)(

2....11.9.7.5.3
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Hence, 2....11.9.7.5.3
....10.8.6.4.2 π= , as required above. We will now examine Euler's integrals 

using the appropriate B(m, n) integrals. Thus, if we start with the above integral 

( )∫ −
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, which can be written in the form ( )∫ −

−

bzb
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/1
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 , and on defining z' = z/b, we 

have dz' = dz/b, and 111 ' −−− = mmm zbz  hence the integral becomes ( )∫ −
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z
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. Now, 

the integral ∫
−

− − dxxxm 2
1

1 )1(  is a beta function, which has the general form B(m, n) 

= ∫ −− − dxxx nm 11 )1( integrated between 0 and 1. In this case the integrals are thus B(m, 2
1 ). 

Then, in the first instance, when m = 2
1 , the integral becomes B( 2

1 , 2
1 ). Beta functions 

are evaluated from their associated Gamma functions, according to the definition :    
                                              

)(
)()(),( nm

nmnmB +Γ
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Hence, B( 2
1 , 2

1 ) = 
1)1(

)2/1(2
π=Γ

Γ . This does not agree with Euler's result, which is π/2. 

Similarly, when m = 2
3  , the value of the integral is B( 2

3 , 2
1 ), which is hence equal to 

πππ .2
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1
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==
Γ

ΓΓ , which is Euler's first result. Again, when m = 2
5 , the integral 

becomes  ππππ
4.2
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8
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ΓΓ ; and if m = 2
7 , then the integral becomes 

πππ
6.4.2
5.3.1

21.3
8/5.3.1

)4(
)2/1(),2/7(

==
Γ

ΓΓ , etc. Thus, it appears that Euler's results differ by a factor 

of 2
1 consistently from what has been written down here by referring to a table of Gamma 

functions and their properties. Perhaps he thought that his first integral gave the Wallis 
result π/2 rather than π. Someone may feel inclined to do some more work on this issue, 
(as there may be a mistake in the E019 paper). We will of course use Euler's values for 
his integrals henceforth.] 

 
Corollary 5.  

295. Therefore the time of descent through AC is known in these cases also.  For if m = 

2
1 ,then in this case  n = ∝− , in which case the time is always indefinitely small. [p. 120] 

Therefore let m = 2
3 , and n becomes equal to - 2, and the descent time is equal to 

f
aa

f

a f 2
..

.2.2

..1 4
2
3

2
3

ππ = , again as we have found (287). Let m = 2
5 , then 2

3−=n  and the 
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descent time is equal to 
4
5

4
5

.4.2

...3.1

f

aπ f2. . And if m = 2
7 , then 3

4−=n  and the descent time 

is equal to 
6
7

6
7

.6.4.2

..5.3.1

f

aπ f3. . 

Corollary 6.  
296. Generally therefore if m = 2

12 +k , in which case k
kn 1−−= , and the descent time is 

equal to ..
2

12
2

12
.

2........6.4.2
)12.......(5.3.1 kf

k
k

f

k
k

a
k

k
+

+
− π  

 
 

PROPOSITION 37.  
 

PROBLEM.  
297.  To determine the time of descent through AC (Fig. 28) to the centre of force C, if the 
centripetal force varies inversely with the reciprocal of the distance, the exponent of 
which is raised to the power m

m 1− , with m denoting some positive integer.  

[This may be compared with the previous proposition, for which the power is 12
12
−
+

m
m .] 

[p. 121] 
SOLUTION.  

Thus, we set m
mn −= 1 and since 

m
m

m
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⎠
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m
yamf  Therefore the element 

of time , that is  
v
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⎞
⎜⎜
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⎛
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−
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m
yamf

111
, and the time to descend 

through PC is equal to :  

m
m
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1

1
− ∫

− )
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Putting zyba mm ==
11

 and ,then ;1dzmzdy m−= and hence the time to pass through PC 
is equal to :  

m
m

mf
−1

( )∫
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. 

 

But for the integral of  
( )zb

dzmz
−

−1 , in the same manner as taken in the preceding Prop., we 

have :  )7.5.2.1
)3)(2)(1(
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On account of which the time for the descent through  AC, with 2
12

2
12

 of placein 
−− m

m
m

ba , 

becomes equal to m
m

m
m

fma
−− 112

2 multiplied by this series :   

)7.5.2.1
)3)(2)(1(

5.2.1
)2)(1(

3.1
)1( etc.1(2 2
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+

−−−−−− −+−
− mmmmmmm

b  

Thus as the amount m is a positive integer, so the series total is finite, in order that the 
time sought can thus be expressed algebraically. E. I.  

 
 

Corollary 1.  
298. Let  m = 1, in which case  n = 0, and the centripetal force is uniform and therefore 
equal to gravity. Hence the series is equal to 1, and the time to fall through AC = a2 , as 
everything has now been found as in §219 with the letter m ignored.  [p. 122] 
 
 

Corollary 2.  

299. Let m = 2, as now  n = 2
1− ; then the time to fall is .2

4
1

4
3

2.3
2

−

fa  

Let m = 3, as now n = 3
2− ; and the whole time to descent is equal to 

.3
3
1

6
5

2.5.3
4.2

−

fa  

In a similar manner, if  m = 4 and on this account, n = 4
3− , and the time to fall produced 

is equal to :  etc. 4
8
3

8
7

2.7.5.3
6.4.2

−

fa  

 
Corollary 3.  

300. Generally therefore for whatever m shall be, and thus  n = m
m−1 ; the time to fall the 

whole distance  AC  

= . 2.
2

1
2

12

)12.....(7.5.3
)22......(6.4.2 mfa

m
m

m
m

m
m

−−

−
−  

 
Corollary 4.  

301. With the same interpolations used as above (294) the times of descent can be 
assigned, if m is any positive integer 2

1+ . Clearly for 2
1=m , in which case  n = 1; the 

time of descent is equal to f22
π , in short as in § 283, where the same case, in which  

n = 1 or the centripetal force is proportional to the distance,  has been explored.   
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Corollary 5.  

302. If  m = 2
3 , or n = 3

1− , the time of  descent is equal to ;.6.
3
1

3
4

22
1

−

faπ  if m = 2
5 ,  

or n = 5
3− , the time of descent produced is ..10..

5
3

5
8

24
3

2
1

−

faπ  And in the general case, 

in which m
mn −= 1 , the descent time is found :  

.24.
112

2)12.....(6.5.2
)22......(5.3.1 m

m
m
m

famm
m

−−

−
− π  

[p. 123] 
Scholium.  

303. From these it is understood, that for whatever cases the times of descent can be 
expressed algebraically, where m

m
m
m nn −
−
−− == 1
12
12 or   and m specifies some positive 

integer. And besides these cases I doubt that any other is given. Then the cases also 
appear in which the times depend on the quadrature of the circle, and these occur, if  
either  

m
m

m
m nn 21

21
12
1 or   +

−
−
−− ==  

with m denoting as above positive integer. Indeed nor are these all the cases which can be 
deduced from the quadrature of the circle, for there is the singular case, for which n = –1, 
which depends on the quadrature of the circle too, as we will show in the following 
proposition. For indeed this is a different case from these, since here in the expression for 
the time not π but π occurs; and besides also only the whole time of descent can be 
shown involving π , since the time for any indefinite interval can be shown except for 
the quadrature of the whole transcendental curve  
 

PROPOSITION 38.  
 

THEOREM.  
 

304.  With the centripetal force present varying inversely as the distance from the centre 
of force  C (Fig. 28) the time of descent through the whole distance  AC =

f
a π , with a 

denoting the distance AC, f the distance at which the centripetal force is equal to the 
force of gravity, and  π : 1 the ratio of the periphery to the diameter of a circle. [p. 124] 
 

 
DEMONSTRATION.  

Since the speed y
afl corresponds to the height the body descends from some point P 

(266), then the speed itself is equal to y
afl  and the time to fall the distance PC is equal 
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to

f
1 . ∫

y
al

dy . Therefore with the integral of this thus taken, in order that is vanishes 

when y = 0, the time to pass through PC is indeed given.  Whereby if y = a now is 
substituted in this expression, the total time to descend through AC is given. Moreover  
on putting y = a z, there is obtained

f
a . ∫

−lz
dz . Truly I have established the 

quantity ∫
−lz
dz  in the Commentariis Academiae Scientiarum Petropol, for the year 1730, 

and if  z = 1 or y = a is put in place,  resulting in the definition of this 1, 2, 6, 24 etc., the 
terminus of which, with the index equal to 2

1− , is equal to π , that has been shown by 
another method in the same place. [Vide : E 019; and also Opera Omnia, series II, vol. 5, 
Sur le temps de la chute d'un corps ....pp. 250 – 260.] From which it is understood that 

the total time to descend through AC is 
f

a π . Q. E. D.  

Corollary.  
305. Therefore if many bodies are released from different distances to the same centre C, 
the times of descent are in proportion to the distances.   
 

  Scholium 1.  
306. In this proposition I have neglected the fraction 250

1 , by which the expression of the 

time, elicited from the integration of the element of distance divided by the square root of 
the speed corresponding to the height,  is to be multiplied (222), clearly in order that the 
time can be inserted in seconds, if the lengths are expressed in scruples of Rhenish feet. 
[p. 125] Also in a similar manner for the following times that I am about to define, unless 
the times are wanted in seconds,  these will be avoided as encumbrances. Indeed it is 
easily seen that nothing else is to be found by expressing the time in seconds, unless the 
use is forced upon us, in which case the expressions of time are divided by 250 and the 
lengths are shown in scruples of Rhenish feet.   
 

Scholium 2.  
307. This paradox is quite apparent, since for the integral of 

lz
dz
−

 , with  z put equal to 1 

[in the upper limit], it becomes equal to π . For no one is able to directly show this 
result by any method ; I myself only knew about this equality later, as can be seen from 
the cited paper. Therefore these two integrals ∫ −lz

dz and ∫ − )1( 2
2

z
dz  give the same 

value, if z is put equal to one after the integration,  and yet they are not equal to each 
other ; indeed they cannot to be compared.  
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PROPOSITION 39.  

 
THEOREM.  

 
308.  If the centripetal force is as the power of the exponent of the distance n and many 
bodies are released to fall from different distances, the times of the descents are 
proportional to the powers of the distances, of which the exponent is 2

1 n− .  
 

DEMONSTRATION.  
Let AC = a be the distance of any body from the centre C and  f the distance at which the 
centripetal force is equal to the force of gravity [p. 126]. Then when it arrives at P, CP is 
put equal to y and the height corresponding to the speed in this place is equal to v, then 

.
)1(

11

n

nn

fn
yav

+
− ++

=  

Therefore the time, in which the distance CP is completed, is equal to 
 

nfn )1( + ∫ ++ −
.

11 nn ya
dy  

Because this integral cannot be evaluated for all n, yet thus it may be compared, as the as 
a and y have the same dimension 2

1 n− for the individual terms of a and y, since in the  
differential they make a number of the same dimension, with dy as one dimension. As if 
after integration, y is put equal to a, in which case the time for the whole descent arises,  
only a will have just the same dimensions, obviously 2

1 n− , or it will be a multiple of 2
1 n

a
−

.  
Whereby, since another factor is not included apart from f  , the numbers thus retain the 

same value, however a is varied, and the different times of descent will be as 2
1 n

a
−

, i. e. 
as the powers of the distances, the exponent of which is 2

1 n− . Q. E. D.  [A power series 

expansion of the inverse square root can be made in powers of  the variable 2
1

)(
n

a
y −

; this 

involves the same integral whatever the value of a, but it is associated with the power 
2

1 n
a

−

, which obviously gives the variation.] 
 

Corollary 1.  
309. Therefore when all the times of descent are equal to each other, it is necessary that  

2
1 n

a
−

be a constant quantity, whatever a may be changed into, and since that happens if n 
= 1, or the centripetal force is directly proportional to the distance, as we have seen (283).  
[p. 127] 
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Corollary 2.  

310. In a similar manner it is at once apparent from these, that if the centripetal force 
varies inversely as the square of the distance or n = – 2,  the times of descent to this 
centre are to each other as the distance raised to the power 2

3 , or in the three on two ratio 
of the distances (287).  

Corollary 3.  
311. If there were many similar attractive centres of force, but with different strengths [or 
measures of effectiveness], and to these bodies are released from equal distances, then the 

times will be between themselves as 2
n

f , since a is considered as a constant,  and f 
indeed is the variable. Truly the strength is as the centripetal force at a given distance, for 
example 1, therefore  fn will vary inversely with the strength, and these times are in the 
inverse square root ratio with the ratio of the strengths of the centres of force (285).  
 

Corollary 4.  
312. And if to the different centres of force of this kind bodies are released from any 
distances, the times of descent of these are in a ratio composed from the direct 2

1 n− power 
of the distance, and inversely as the square root of the effectiveness [or strength of the 
attracting source].  
 

Scholium.  
313. From these propositions, which have been discussed above concerning centripetal 
forces, it has been made abundantly clear how the motion of bodies should be found, if 
the centrifugal force is substituted in place of the centripetal force, or a force repelling the 
body from the centre.  
[It is important to note that Euler's usage of the term 'centrifugal force' is different from 
what is now understood: in Euler's day it was a true repulsive force, while in modern 
times it has come to mean an apparent or fictitious force.]  
Indeed everything remains as in the preceding discussions, except that in place of the 

formula expressing the centripetal force, which was n

n

f
y  (264) [p. 128], the negative of 

this must be used. Yet neither do I judge it superfluous to report on certain other cases; 
for these are known from the general rules pertaining to forces for general motion, which 
cannot be deduced from a single calculation. Moreover these rules pertain to the action of 
forces on a body at rest, to which our calculation, clearly when the increment of the speed 
with respect to the first is infinitely small, is not so well adapted, with the thing itself 
reduced to absurdity, unless the first element of the distance is traversed in an infinitely 
short element of time. Moreover I make use of this axiom in order to elucidate the matter,  
that a body placed anywhere will always be repelled from the centre of force, even if the 
centrifugal force for that point is indefinitely small or zero ; and because that happens, 
when the power of the distances to which the centrifugal force is in proportion is a 
number greater than zero or positive.   
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PROPOSITION 40.  

 
PROBLEM.  

 
314.  From the centre of  force C (Fig. 29) with the body itself being repelled in the ratio 
of the nth power of the distances along the line CP; it is required to find the speed of this 
body at any point P and the time in which the interval CP is traversed.  

 
SOLUTION.  

 If  f is the distance at which the centrifugal force is equal to the force 
of gravity, and CP is called y, to which the corresponding height of the 
speed at P is v. [p. 129] Therefore the force, by which the body at P is 

pressed upon, is equal to n

n

f
y  and therefore n

n

f
dyydv =  (213), since the 

body is driven forwards with an accelerated motion.  Whereby, since 

the body is given zero speed at C, then n

n

fn
yv

)1(

1

+

+

= , if n + 1 is a 

positive number; but if it is negative, then v becomes infinite. From 
this the time is produced, in which the distance  CP is traversed,  

 

= nfn )1( + nn
n yfnydy

n
−

− +=∫
+ 1

1
2 )1(: 2

1
,  

if indeed y1-n is 0 with y = 0. For if it were infinite, the time too would become infinite on 
account of adding on a constant of infinite magnitude ; from that it may be deduced that 
the body never leaves C. Therefore the time will be equal to 

nn
n yfn −

− + 1
1

2 )1( ,  

as often as both the amounts 1 – n and n + 1 are taken as positive numbers. Q. E. I.  
 

Corollary 1.  
315. Indeed both these numbers 1 – n and n + 1 are positive, if n is contained between the 
limits  – 1 et + 1. And if  n has crossed that limit  – 1, the speed everywhere shall be 
infinite ; and thus if  + 1 is crossed, the time will be infinite.  

 
Corollary 2.  

316. Moreover it is agreed from the nature of things, that if n is a positive number, then 
the body would never be leaving C (313) [Thus, on physical grounds, the initial force 
must be zero at C, otherwise the body has a finite speed at this point, in contradiction 
with the formula for the speed, which is zero at C]. On this account it is necessary that the 
calculation fails, although n is contained between 0 and + 1, and in this calculation used it 
is clear that a finite time is considered to have passed, [whereas only an elemental time is 
allowed].  [p. 130] 
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Corollary 3.  

317. These times moreover follow from the speeds, and hence from these the speed must 
be  considered absurd, whenever n is understood to be between 0 and + 1. Neither indeed 
are these speeds possible to be generated, since the body never leaves C.  
 

Scholion 1.  
318. Let the curve AM (Fig. 30) be such, that with AP denoting y 
and the applied abscissa PM is equal to v. This curve, with n 
contained between the limits 0 and  + 1, has this property,  as it 
merges with the axis from A and in this place the curvature has 
an infinite magnitude, truly the vanishing radius of curvature.   
 

Corollary 4.  
319. Therefore as it often happens, the scale of the speeds or 
rather of the heights of release corresponding to the speeds have a form of this kind, just 
as often as it is judged to have been generated by a zero force, even if a calculation shows 
otherwise, for it can be no more than a case within the imagination and in the nature of 
things to be non-existent.   

 
Scholium 2. 

320. The reason for this aberration of the calculation from nature 
in the beginning of the motion has without doubt been established,  
and this other universal law in place concerning the increment of 
the speed produced from the forces is wrongly used. [p. 131] 
Since indeed, as now we have noticed (313), this law is only put 
in place when the body has a finite speed, and this is always 
rashly used at the beginning of the motion. Moreover since that 
error only belongs to the first element, and generally is infinitely 
small and on this account is not required to be considered. Truly it 
is infinitely small, just as the first element of distance is traversed in an infinitely small 
length of time, then indeed neither the increment in the speed nor the increment in the 
time will be able to produce an examinable distinction. This happens, if the force, which 
the body in the beginning of its motion is acted upon, is either of finite or even infinite 
magnitude ; indeed this is evident in the case of the first element of time for the point to 
pass through. But if the force, as in our case has come about in use, in the beginning is 
infinitely small or rather zero, so much for the first element being completed in a finite 
manner, for rather it is necessary for the an infinite time, since the body is at rest with no 
force pushing  and it will never leave its place. In certain of the remaining cases, for 
which n is not only greater than zero, but also greater than one, the error is so great, that 
even the calculation of the first element shows an infinite time. Truly, if  n is understood 
to lie between 0 and 1, the flaw in the calculation is noticed; and the use is seen for this 
idea, since in these cases the scales of the forces has the form of the curve  AM (Fig. 31), 
which meets with the axis AP at A at right angles. Indeed suddenly in the proximity of the 
point A with the line ab expressing an infinitely greater force than the length of the sagitta 
Aa; moreover likewise in the computation of the motion, or the element considered that 
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the body runs through from the action of the force, which in the beginning it does, or that, 
by which it is acted on up to the boundary. [p.132] Moreover in this case it being 
apparent that the error has an opportunity to arise, if the body is considered to be acted 
upon through the whole element Aa by the force ab.  

 
PROPOSITION 41.  

 
PROBLEM.  

 
321.  If the centripetal force is proportional to some function of the distance from the 
centre C (Fig. 32), and the body is dropped towards C from A, the speed of the body is to 
be found at any point P and the time in which the interval AP is traversed.  

 
SOLUTION.  

 The curve BMD represents the scale of the forces 
or the law of the centripetal force, thus in order 
that the body at P is drawn towards  C by the 
force PM, which is in the ratio to the force of 
gravity thus as this line PM is to the line of 
constant length  AE, by which the force of gravity 
is expressed. Now let AP = x, PM = p, AE = 1 and 
the height corresponding to the speed at P is equal 
to v. The accelerating force is  p, and therefore, 
with the element  Pp = dx, it follows that  
dv = pdx (213). From which by 
integration ∫= pdxv  is produced. But ∫ pdx  

expresses the  ABMP; and on account of this we have AE
ABMPv = , which is made 

completely homogeneous by taking the line AE = 1. Now with the height v known, the 
time in which the distance AP is traversed, equal to ∫ ∫ pdx

dx , which, since p is given 

through the distance x, can be found by quadrature. Q.E.I. 
 

Corollary 1.  
322. From these it is evident that if the body with the speed that it acquired at C, moves 
back up again, then the ascending motion of the body is similar to that of the descent and 
it has the same speed at the point P [p. 133] that it had before, and hence the time to 
ascend through CP must be equal to the time falling through the same interval.  
 

Corollary 2.  
323. Here we have put the body at A to have no speed and to begin the motion from rest. 
But the calculation is not more difficult to perform if the body is given some speed at A ; 
for in this case with the differential pdx thus can be integrated, as with x = 0, the integral 



EULER'S MECHANICA VOL. 1.  
Chapter Three (part b).  

 Translated and annotated by Ian Bruce.                                page 156 

∫ pdx  departs from the height of the initial corresponding speed. Therefore the time  

∫ pdx  with this reasoning accepted is found in the same way as above.  

 
Scholium 1.  

324. Indeed we have assumed that p is a function of  x itself, and therefore not with 
respect to the centre of force C, by only of the initial motion A. Yet the solution is held in 
place to no lesser degree if indeed p is a function of the distance CP from the centre of 
force C, that we may call y, and  y = a – x , with the whole interval put in place AC = a, 
and because of this,  p denotes a function of a – x, i. e. a function of x and of a constant, 
as we have assumed. Truly our solution extends to more cases, for it determines the 
motion of the body acted on by any force, not with respect to having any certain fixed 
point, and provided these forces keep acting in the same direction everywhere. Indeed 
unless this [latter] condition is made, the body will stop moving along a line and begin to 
move on a curve, the motion of which we will set out in the following chapters.  [p. 134] 
 

Scholium 2.  
325. Up to the present we have determined the rectilinear motions of a body under given 
forces ; now indeed the other part of this chapter remains to be explored, from which it is 
required to define the law governing the forces from the given condition of the motion. 
This indeed shall be either from the speeds or times, and moreover each of the two ways 
is to be investigated. Indeed this will be with regard to either a single descent or ascent, in 
the individual points of which either the speeds or the times are given, in which certain 
parts of the interval are traversed. Or an infinite number of descents to a fixed point from 
different heights are to be made, in which either the final speeds or the individual times 
taken to complete the whole interval are given. Therefore from these in the first place 
four problems arise, the solutions of which it is necessary to display here.  Besides these 
other questions will be brought forward, in which neither the speeds alone nor the times 
alone are given,  but a certain other amount, that is composed from both,  and indeed the 
questions of this kind, since a great many can be devised, some more conspicuous,  and 
likewise from the solutions of these the remainder of the solutions can be understood that 
we advance in the discussion.  

 
 

PROPOSITION 42.  
 

PROBLEM.  
 

326.  With the speed of the body traveling on the line AP given at the individual points 
(Fig. 22), the law of the force acting is to be found that brings about this motion.  [p. 135] 

 
SOLUTION.  

 For whatever interval AP traversed, which we put equal to x, the height corresponding to 
the speed of the body at P is set equal to v, which hence is given, and a certain function of 
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x itself and of the constant is be put in place. Truly the force acting at P that we seek is 
put equal to  p, which hence can be found from the acceleration of the body dv, while it 
runs through the element Pp = dx,. Since indeed dv = pdx (213),then dx

dvp = , or the force 

sought itself will be found relative to the force of gravity, as the increment of the height 
corresponding to the speed is to the element of distance that the body has travelled 
through meantime.  Q.E.I.   

Corollary 1.  
327. If v = x or the distance described by the body itself  is equal to the appropriate height 
for the speed, becomes  dv = dx and p = 1, which indicates that this force produces a 
motion that is uniform and equal to gravity itself.  

 
Corollary 2.  

328. If the speeds themselves are placed in proportion to the distances traversed, then 

f
xv

2
= , with f denoting the required constant; hence this becomes f

x
f

xdx pdv 22  and == . 

On account of which the force will be proportional to the distances traversed.   
 

Scholium 1.  
 

329. But it is agreed from above that it is not possible for this case to exist ; for since the 
force at the start of the motion at A is zero, [p. 136] the body never leaves this point, but 
remains at rest here for ever. The same can be pointed out for the time computed for the 
distance AP , which is equal to fx

dx∫ , which is an infinite quantity, if with the integral 

thus accepted, as it vanishes with x put equal to 0.  
 

Corollary 3.  
330. Therefore for this situation not to arise, it is necessary that dx

dv shall be a quantity of 

this kind, which does not vanish by making v = 0, but which shall be either a finite or 
infinite quantity. From which it is evident that the scale of height with the corresponding 
speeds  AM (Fig. 30) in which by taking AP = x  with the lines PM  that represent these 
heights v, must not coincide with the axis at A, for it is necessary that it is set at some 
finite angle to that axis. [Thus, asymptotic tangents are not allowed.] 
 

Scholium 2.  
331. These are to be understood to apply only to these cases, in which the speed of the 
body is put vanishing at A and with the scale AM meeting the axis at A. Otherwise the 
following occurs, if the body at A now has a speed, by which, even if the force is zero, 
yet it is able to progress under the action of the force, as thus it is not necessary for an 
infinite time to be spent for the distance AP to be completed.  
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PROPOSITION 43.  

 
PROBLEM.  

 
332.  With the time given, in which the body progressing on the straight line AC (Fig. 32) 

passes through the particular interval AP, it is necessary to define the law of the force 
which is effected, in order that the body is carried forwards by this motion. [p. 137] 

 
SOLUTION.  

  With the given distance AP =  x and with the time in which it is transversed equal to 
t , since the square of the expression of the time has the single dimension t [for 

convenience as the expression is eventually squared, the time T is written as T = t ], the 
force sought is equal to  p and the height corresponding to the speed at P = v; this indeed 
is necessary in order that p can be found, although it must emerge from the calculation. 
With these put in place it will be as before : dv = pdx and v = ∫ pdx . Therefore the time 

t = ∫ ∫ pdx
dx , from which equation by differentiation there is produced : 

2

24
2

 and 
dt
tdx

pdx
dx

dt
dt pdx == ∫∫

, for which with the differential is taken again and dx 

held constant there remains : 3
84

dt
tdxddt

dt
dxp −= . Q.E.I.  

[Thus, as the integral is a function of t,  on differentiating : 3

2

2

2 84
dt

ddttdxdt
dt
dxpdx −=  , 

giving the above result.] 
Corollary 1.  

333. If the time itself is put equal to T with the homogeneity ignored, then t = T2,  and  it 
is found that 3

2
dT
dxddTp −= .  Which simpler expression is superior and easier to adapt for 

special cases.   
Corollary 2.  

334. If the times are made proportional to the distances described, then T = x and ddT = 
0, on account of which dx is constant. Consequently the force will be zero, by which the 
body is indicated to continue this steady motion with this force in place.   
 

Scholium.  
335. Here it is to be observed that a function of the same kind is to be taken for x, which 
as it becomes zero when x = 0,  then with increasing x it also increases. [p. 138] Indeed it 
is not able to be entirely the same, as if the body continues to move, the time may be 

made smaller. We may put, for example, )2( 2xaxT −= , which quantity increases with 
increasing  x to a certain limit, then indeed it decreases. Therefore it becomes : 

  and  232

22

2 22 /)xax(
dxaddT

)xax(
xdxadxdT

−
−=

−
−= . From these make 3

2

)(
2

xa
ap
−

= , or from the 

position AC = a the body is acted on from P to C by a force that varies inversely with the 
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cube of the distance from C. Therefore the time )2( 2xax −  will not prevail beyond  C, 
for which x = a. But in this case it has acted thus (289). Whereby from this it is seen to be 
concluded that the body, when it arrives at C, never leaves from there, which can thus be 

conceived possible. Because on approach, since ,v xa
)xax(

dT
dx

−
−==

22  the speed of the 

body, as it might  proceed beyond C, should become negative, and thus the body does not 
depart from C, but is approaching C [from below], which thus is in contradiction [with 
the first condition of approaching from above], as these are unable to be reconciled.  
 

 
Corollary 3.  

336. Since the element of time 
v

dxdT = , the speed of the body at some place dT
dxv = ; 

therefore from the given law of the times the speed of the body at individual points 
likewise will become known, since indeed from the connection between the speeds and 
the times consequently without regard to the force (37). [p. 139] 
 

PROPOSITION 44.  
 

PROBLEM.  
 

337. If the body thus falls along the line AP (Fig. 33), so that it has the speed at P in the 
same time as it has traversed the distance AP, with which it could traverse the distance 
PM of the adjoining given curve AM with this uniform speed; it is necessary to determine 
the law of the force acting, by which such motion is generated.  
  

SOLUTION.  
  By putting AP = x and PM = s will be a function of x 
on account of the given curve AM. Again let the force 
acting on the body at P be equal to p, with the height 
corresponding to the speed at P equal to v and the time, 
in which the distance  AP is completed is equal to T. As 
now the distance s is completed in the same time T with 
the speed v by a uniform motion, then the time 
becomes 

v
sT =  and ∫ ∫

=
pdx

dxT , on account of which 

we have :  
∫∫

=∫ pdx
s

pdx
dx , or with the final v in place 

of ∫ pdx , from which the calculation is more neatly returned, it becomes 
v

s
v

dx =∫ . 

Which expression on differentiation, gives 
vv

sdv
v

ds
v

dx
2

−= , from which this equation 

can be deduced : s
dx

s
ds

v
dx 22 −= ; the integral of which is:  ∫−= s

dxlslv 22 , or 
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22 sev s

dx∫−= , with e denoting the number of which the logarithm is 1. With the 
differential taken again, there is produced : )(2 2 sdxsdsepdxdv s

dx
−== ∫− . 

[For s
dx

s
ds

v
dv 22 −= .] From which finally it is found that : 

)(2 2
dx

dxdss
dx

sep −∫−= . 

Therefore the force will be known for the  p sought for this equation, since s is given it 
terms of  x. Q.E.I. 

[p. 143] 
 

Corollary 1.  
338. Since [the corresponding height] is given by 22 sev s

dx∫−= , then the speed of the 
body at P is hence given by sev s

dx∫−= . Moreover as we will soon establish, a constant 
from the integration s

dx must be added.  

Corollary 2.  
339. The time T also, in which the distance AP is traversed, is easily deduced from these.  
For since the time is equal to 

v
sT = , [from above] we have : ∫= s

dx
eT . Therefore since 

the time T should vanish with x made equal to 0, it is required that s
dx thus to be 

integrated, in order that ∫ s
dx

e vanishes when x = 0. On account of which it is required that 
the integral becomes ∝−=∫ s

dx , if x is put equal to 0.  

Corollary 3.  
340. If we put nxs = ,then the integral lclxns

dx +=∫ 1 . Therefore for any c that may be 

denoted, it shall always be the case that ∝−=∫ fit s
dx  with x = 0. Whereby [on taking the 

exponentials] : Tcxe ns
dx

==∫ 1
. Consequently on substitution into the above formula :  
n

n
n

n
xvxp c

n
c

)n(n 12

2  and 12 −−

== − .  

Corollary 4.  
341. If xs = , it is evident that the motion along AP must be uniform, which can also be 
shown by calculation. Indeed if we set n = 1 thus  p = 0 and c

nv =  or to be constant. [p. 

144] 
 

Corollary 5.  
342. If n is made smaller than one, then the speed at the point A is made infinitely large, 
and also the force p will vary inversely with the power of the exponent n

n−2  of the 

distance traversed.  
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Corollary 6.  

343. If n is greater than one, and yet less than two, then the speed is certainly zero at  A,  
but the force remains infinitely great at A, and it decreases in the ratio of a certain 
multiple of the distance traversed.  

Corollary 7.  
344. If  n = 2, we have the case of the uniform force. Indeed it happens that 2

4
c

p =  

and xv c
2= . And we have demonstrated this property from proposition 230, where we  

shown the body under the hypothesis of this uniform force acquiring a certain speed 
descending from rest through some distance, for which in the same time, falling with the 
same final speed, it would travel through twice the distance.   
 

Corollary 8.  
345. Truly if  n should be greater than 2, those cases are produced, that we have discussed  
(319) that it is not possible to obtain in physical circumstances, even though the 
calculation shows otherwise. For it happens that the speed at A is zero, and the force in 
that place vanishes, on account of the body being unable to leave A, not according to the 
opposing calculation, which shows a finite time T for the body to traverse any finite 
distance AP.  
[p. 142] 

Scholium.  
346. Hence the case of this proposition is of this kind, in order that the given motion is in 
agreement with the speed and the time combined together, from which the law of the 
force should be elicited. Indeed many examples of this kind can be shown to be 
redundant, since from a single one the method of solving all the others is evident.   
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PROPOSITION 45.  

 
PROBLEM.  

 
347. With the speeds given which a body acquires, falling from any distances towards the 
centre of force C (Fig. 34),  to define the law of the centripetal force producing the 
descents of this kind, with the position in which the body begins its individual descents 
taken from rest. 
  

SOLUTION.  
  Let CM represent the altitude scale [i. e. graph; Euler 
uses the word scala, which means 'ladder', or 'steps'.] for 
the heights corresponding to the speeds which the body 
acquires at the point C, so that PM is thus the height 
corresponding to the speed that the body gains on starting 
its descent from P towards C. Truly the curve DN is the 
scale of the forces sought, of which it is agreed that the 
applied lines PN show the centripetal force acting on the 
body at the point P; and indeed the line CB marks the 
centripetal force equal to the force of gravity. With these 
in place, and with the body falling from P to C, the 
height corresponding to the speed at C is equal to the applied area CDNP to the line BC 
(321). On account of which BC

CDNPPM = . Now CP is called y, PM  v, and PN  p; [p.143] 

and with BC = 1 then ∫= pdyv  and on being differentiated, dv = pdy. Whereby since v is 

given in terms of y, it follows that  dy
dvp = . Q.E.I.  

[Thus, if we want a modern equivalent to Euler's derivation, we can consider the area 
CDNP to be the work done by the centripetal force on unit mass over the distance CP, 
which is equivalent to the work done on unit mass in the uniform gravitational field case 
over the distance PM.] 

 
Corollary 1.  

348. Let the speeds acquired at C be as the distances traversed : v  is as y consequently p 
is as y. Therefore the centripetal force is proportional to the distance from the centre C. 
 

Corollary 2.  
349. If the speeds acquired at C are made proportional to the exponent n of the distances 
from the centre C,  then v will be as ny2 , and hence  p is as 12 −ny . Therefore the 
centripetal force is in proportion to the distances raised to the power 2n – 1.  
[Note : n = 1 above.] 
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Corollary 3.  

350. Since the speed acquired at C, since y = 0, should also be equal to zero and besides 
for the greater distance y the larger the corresponding speed should be, then n is signified 
by a positive number. [Thus, a body released at C has no speed at C.] 
 

Corollary 4.  
351. Moreover the force p is constant when 2

1=n ; and for which if the number n were < 

2
1 , the centripetal force varies inversely as some power of the distance from the centre  

C. But if n were  > 2
1  , then p varies directly as a certain power of this kind.  In the 

former case the centripetal force at C will hence be infinitely great and decreases with 
increasing distances ; indeed in the other case when the force is zero at C, it increases 
with increasing distances. [p. 144] 

 
Corollary 5.  

352. Since  CB
CDNPPM = , it is evident that the curve CM is also the scale of the heights  

for the corresponding speeds, when the body moves away from C along the straight line 
CP, with the centripetal force changed into a centrifugal force, and the motion beginning 
from rest at C. (321) 
 

Scholium.  
353. Moreover though in this manner a problem can be reduced to Proposition 42 (326), 
by changing the centripetal force into a centrifugal force,  yet the ascent time through CP 
in the case of the centrifugal force will not be equal to the time of descent through PC in 
case of the centripetal force. Nor indeed are the speeds equal, which are generated in each 
case by equal distances being generated, that leads to equal times, but that is also 
apparent to be the opposite upon consideration. For just as the centripetal force at C is 
zero, the centrifugal force also disappears [in Prop. 45] ; on account of which the ascent 
time along CP is infinite (314), while the descent time is still completed in a finite time. 
Therefore there is no basis from that likeness of the speed for supplying the needs to 
solve the following problems. Moreover in the following propositions the times are to be 
given, in which the individual descents are completed, and that not only is the most 
difficult for the solution, for from the scale of the times no certain scale of the forces can 
be established. On which account we will include only special cases for this proposition, 
the solution of which is not prevented by our forces. [p. 145] 
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PROPOSITION 46.  

 
PROBLEM.  

 
354. If the times, in which the body (Fig. 35) reaches the centre of force C from any 
distances PC, are in the ratio of some multiple of the distances, then the law of the 
centripetal force can be defined.  
  

SOLUTION.  
  These times are as the powers of the distances of the 
exponent n, and the curve DN  is the scale of the 
centripetal force sought, thus as the line πv applied sets 
out the force by which the body present at π is acted upon 
towards C, with CB representing the force of gravity. 
With these in place the body descends from some point 
P, and the distance PC is put equal to  a,  and hence the 
descent time through PC is as an, on account of which we 
put that equal to Can, with C denoting some constant 
quantity, which does not contain a , since a on account of 
the variable point P is indeed itself a variable quantity. 
Now the body arrives at some place π for 
which ,xC  called is π  the height of that place corresponding to the speed is equal to  
[v =] BC

vDCCPND
BC

PNv ππ −=  (321) [Thus, the linear case gΔv in modern terms is equal to 

the non-linear case ∫ady , where a is the non-linear acceleration].  Moreover the area 

CPND is put equal to A and the area CπvD = X  and  BC = 1; therefore the height 
corresponding to the speed at π is equal to A – X and the speed itself is equal to 

.)( XA −  Here it is to be noted moreover that X is some function of x and of the 
constant, in which a is not present; indeed the area CπvD does not depend on the point P, 
but keeps the same value, wherever the point P is taken, since the distance Cπ remains 
the same. But the quantity X is such a function of x, just as A is a function of a; indeed by 
changing x into a the function X is changed in A. [p. 146] Now the time, in which this 
descent of the distance Cπ travelled through, is equal to ∫ − )( XA

dx , as the integral thus 

must be taken so that with x made equal to 0, the integral should itself vanish. Therefore 
from this expression the total time can be found for the descent along PC, if x is put in 
place equal to a, in which case X too is changed into A. Moreover, since this resulting 
quantity thus must be able to be compared, as in that a may have the dimension n. On 
account of which also the formula of the differential

)( XA
dx
−

 has dimensions n, (for the 

integral is required to be equal to Can), and it is likewise necessary in the indefinite 
integral ∫ − )( XA

dx  that a and x have dimensions n everywhere. On account of which also 
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the formula of the differential 

)( XA
dx
−

 has dimensions n, and it is established that as a 

and x are to have  a single dimension as also dx. Therefore it is evident that a and x 
should have the dimensions n−1  in XA − ,  and n22 −  in XA − . But since a is not 
present in X,  X must be a function of dimension n22 −  of  x only; therefore X cannot be 
any other function than nbx 22− , and therefore nbaA 22−= . Indeed a constant amount can 
be added to  nbx 22− , when that, since to nba 22− has to be added equally, may again 
exceed that from  XA− . For if we put nn bcbxX 2222 −− +=  and hence 

)( 2222 nn xabXA −− −=− . But since X denotes the area CπvD, it should vanish when x 
= 0, on account of which, if n22 −  is a positive number, it must always be the case that 

022 =− nbc ; but if n22 −  is a positive number, the quantity nbc 22− will be assigned to a 
negative infinite quantity [in the integral, which cannot happen]. Therefore whatever is 
shall be, nbc 22− must be nb 220 − ; indeed with this, if n22 −  or n−1  is a positive number 
[p. 147], it freely vanishes, and if n−1  is negative, it presents an infinitely large number. 
But when the proposition shall be to find the law of the centripetal force, nothing is 
returned, as this constant quantity is either zero or an infinitely large number. And with 
the centripetal force at π = p = πv, the area X = CπvD= ∫ pdx . On account of which we 

have ∫=+ −− pdxbcbx nn 2222 , and with the differentials taken, there is produced 
nbxnp 21)22( −−= . Consequently, the centripetal force must be in the ratio of the 

( n21− ) power of the distances. Q.E.I.  
 

Corollary 1.  
355. Therefore, when all the descents to the centre C are to be isochronous or completed 
in equal times, n should be put equal to zero, with which put into effect it comes about 
that the centripetal force is directly proportional to the distance. Indeed now we turn our 
attention to the case when all the descents to the centre are isochronous. (283). 
 

Corollary 2.  
356. If we put n = 1, as the times of descent are in proportion to the distances traversed, 
with 2 – 2n vanishing, the centripetal force also disappears. [Correction made by Paul 
Stackel, the editor of this volume of the Opera Omnia.] 
 

Corollary 3.  
357. If 2

1=n , or the times are in the inverse square root ratio of the distances, the 
centripetal force is constant, as besides we have elicited that property above (218). If  
therefore 2

1>n ,  the centripetal force decreases with increasing distance, but if 2
1<n , it 

increases with increasing distance. [p. 148] 
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Scholium.  

358. Indeed these properties all follow from Proposition 39 (308), where we have shown, 
that if the centripetal force is set out as the nth power of the distances, the times of descent 
are in the ratio of the 2

1 n− power of the distances. Which proposition is in close agreement 

with our other arguments;  for with n put in place of 2
1 n−  there is produced 1 – 2n in 

place of n. Yet it has never been considered by me to have an influence on this 
proposition, for here from the first, by the analytical method from the given condition of 
the times, the law of the centripetal force has been elicited,  where I might have been led 
to the same in the reverse order. Neither in addition was it certain before that these other 
laws found for centripetal forces were not satisfactory. Truly the incredible solution in the 
latter excels in usefulness. For since it is purely analytical and it is my own personal 
development, as no one until now has embraced the use of the method, and which enables 
the solutions to be deduced for many other problems, which by other methods are 
attempted in vain. Thus since a method of this kind has been hitherto unknown, neither 
isochronous descents nor tautochronous curves have been found before in this way, but 
rather have been found by examining either the centripetal force proportion with distance,  
or the cycloid curve, from which these the properties have arisen unexpectedly for 
Geometers.  
 [Thus in his own quiet modest way, Euler sets out his claims for the new analytical tools 
he has developed : this particular chapter of this book marks a sort of watershed in Euler's 
works : for the older semi-geometrical methods are to be laid to rest for ever and to give 
way to this modern vibrant analytical tool, that has grown in stature from his earlier 
papers. One has to remember that these thoughts by Euler were set in print in 1733 a few 
years after the death of Newton, and that some 18 years previously Taylor had produced 
his Calculus based on Newton's methods and notation : the latter was doomed to oblivion 
despite its brilliance due mainly to its obscure notation, and Euler's methods are still with 
us. It is even more remarkable, perhaps, that only 100 years before, Briggs was perfecting 
logarithms with no symbols in sight, and Harriot's book essentially on Vieta's forward 
looking algebra involving the first use of symbol methods, had just been published.] 
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PROPOSITION 47.  
 

PROBLEM.  
 

359. From the given scales of the forces BND (Fig. 36), by which the body is acted upon 
falling through the distance AC, to find innumerable others such as βνδ , by which the 
body acted on by a force at C always acquires the same speed, with the body always 
starting from rest at A. [p. 149] 
  

SOLUTION.  
  Since for the graph [scala] of the forces BND, the 
height corresponding to the speed that the body has at C, 
is equal to CE

ABCD  (321), with CE set out as the force of 

gravity, and for that scale βνδ  with the height equal to  

CE
CAβδ (cit.), the area ABDC should be equal to CAβδ , 

certainly a property that an infinite number of curves can 
have. Indeed with the point P anywhere in the interval 
AC, the point cannot have this equal area property, as it 
must have the areas PAABNP βν= , unless the curve 

βνδ falls on the other curve BND. Therefore there will be a certain difference between 
these areas, that we may call  Z, thus, in order that ZABNPPA −=βν , which difference 
Z thus ought to be compared, in order that it vanishes with the point P incident on A as on 
C. On this account some other curve AMC is constructed on the axis AC, which crosses 
the axis at the points A and C, and the applied line PM can be use in place of this Z; 
indeed it will vanish with the point P transferred to either A or C. Moreover when from 
the same curve AMC innumerable curvesβνδ  can be deduced, it is expedient  to use 
some function of the applied line PM in place of Z as itself. Truly this function must have 
this property, that it becomes equal to zero, if PM has disappeared. Now with these thus 
in place, put ,zPMYP,yPN,xAP,aAC =====  and ν of which quantities a, x, 
y, and z, as well as Z, a function of  z, are be considered to be given, then truly the 
unknown quantity will be Y, [p. 150] which is defined from this equation 

ZydxYdx −=∫ ∫ . Indeed by taking the differentials, the equation  

dx
dZyY −=  is produced , 

from which equation the curve βνδ can be constructed. Q.E.I.  
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Corollary 1.  

360. Let 2nzZ = , the nzdzdZ 2= and dx
nzdzyY 2−= . But dx

nzdz2 denotes the subnormal to 

the curve AMC, drawn to the normal MR at the point M. If thus νN is taken, which is the 
line equal to ,Yy −  equal to some multiple of the subnormal PR, βνδ  will satisfy the 
curve sought.  
 

Corollary 2.  
361. We can also put pzdzdZ = , with p denoting some function of z. Here indeed we 
have no need to consider that above,  since Z can always be taken to vanish, as it becomes 
zero with z put equal to zero. For any function taken in place of p, the integral itself pzdz 
always thus can be taken, as it becomes zero with the position z = 0. On account of this 

we have this equation :   ,PR.pNPR.pyyY dx
pzdz =−=−= νor   which construction 

appears to have the widest use.  
 

Scholium.  
362. Here it is to be noted that it is not necessary that the regular curves BND  and AMC 
are adhered to, which are retained by reliable equations. For the curvesβνδ  to be 
constructed, also it is sufficient for especially irregular curves to be accepted with no 
equation satisfied. Equally indeed the construction for determining the subnormals is 
successful.[p. 151] 
 

PROPOSITION 48.  
 

PROBLEM.  
 

363. From the given scales of the forces BND (Fig. 36) , by which a body acted upon 
traverses the interval AC, to find innumerable other curves such as βνδ , by which it is 
effected, that the body completes the interval AC in the same time.  
  

SOLUTION.  
  For any interval taken AP let the time, in which this is completed with the scale of the 
forces acting BND, be equal to t and the time, in which the same interval is completed 
with the scale acting βνδ  is equal T,  and put ZtT += , which quantity Z vanishes with 
the point P transferred to A or C. On this account as before, with this Z  made a function 
of the applied line PM, with the curve AMC crossing the axis AC at A and C, such that it 
vanishes by making 0== zPM ; now we call AP x, PN y and Pv Y, and the time 

∫ ∫
=

ydx
dxt  and ∫ ∫

=
Ydx
dxT , wherefore we have this equation : 

,Z
ydx

dx
Ydx
dx += ∫∫ ∫∫

from which Y can be determined. For on differentiating, we have 
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,dZ

ydx
dx

Ydx
dx +=

∫∫
 from which is produced : 

.YdxYdx
)ydxdZdx(

ydxdx
ydxdZdx

ydxdx
2

2

 and  
∫+

∫
∫+

∫ == ∫∫  

Since indeed this quantity can be constructed from the given x, y and Z  to be constructed, 
for that integral to be put equal to P, and hence : Ydx = dP; consequently dx

dPY =  can be 

found Q.E.I. [p. 152] 
 

Corollary 1.  
364. Let pzdzdZ =  as before with p denoting some function of  z, then dx

zdz is equal to 

the subnormal PR, that we put equal to r. From that done we have 2)1( ∫+
∫=

ydxrp
ydxP  and  

.dx
dPY =  

Corollary 2.  
365. Let the given curve BND be a straight line parallel to the axis  AC, in order thus that 
the force is constant; indeed a constant force is given always,  which is effective, so that 
the distance AC is completed in a given time. Putting AB = PN = b ; then the integral 

.bxydx =∫  Hence we have ,2)1( bxrp
bxP

+
= and from this by differentiation dx

dPY = is 

obtained.  
Scholium.  

366. These two final propositions are almost alike and thus are connected to each other, 
since also they require to be solved in a special way, the usefulness of which is apparent  
when the method is used again in the following chapter. Moreover indeed these 
propositions are not inelegant and bring to a conclusion all the cases to be explained 
regarding rectilinear motion produced by the forces which we have set in place, and 
which by necessity had to be inserted. Nor indeed has it seemed suitable to adapt these to 
specific cases,  on account of the exceedingly extended calculations that would have 
arisen. Therefore from these we move on to consider rectilinear motion of a medium with 
resistance.   
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CAPUT TERTIUM  

 
DE MOTU RECTILINEO PUNCTI LIBERI 
A POTENTIIS ABSOLUTIS SOLLICITATI 

[p. 115] 
 

PROPOSITIO 35.  
 

PROBLEMA.  
286.  Si fuerit vis centripeta quadratis distantiarum a centro C (Fig.28) reciproc 
proportionalis et corpus ex A in C usque delabatur, inveniendum est tempus, quo corpus 
quamvis huius spatii AC portionem percurrat.  

 
SOLUTIO.  

 Manente AC =  a et distantia, in qua vis centripeta 
gravitati aequalis est, f, sit CP = y et celeritas in P debita 
altitudini v. Erit ergo ob n = - 2, ex prop. 32 (264),  

ay
ya

ay
ya fvfv −− =⎟
⎠
⎞⎜

⎝
⎛= et  2 . 

Elementum igitur temporis 

)()( 2
.fit  

yay

ydy
v
a

yaf
aydv

v
dy

−−
== .  

Consequenter tempus per PC est ∫ − )( 2.
yay

ydy
v
a . Est 

vero ∫∫ −
+−−=

− )(
)2(

)( 2
2
1

2 yay

ady
yay

yay

ydy
. 

Quare descripto super AC semicirculo AMC ductaque ordinata PM,  erit CM = 

∫ − )( 2
2
1

yay

ady
et PM = )( 2yay− . Propterea prodibit tempus per CP = )( PMCMf

a − atque 

ex hoc tempus totius descensus per AC = f
aAMC . Tempus ergo, quo portio AP 

absolvitur, est )( PMAMf
a + . Q. E. I.   
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Corollarium 1.  

287. Denotante igitur 1 : π rationem diametri ad peripheriam erit AMC = .2
1 πa   Ideoque 

erit tempus descensus per AC = f
aa

2
π . Ex quo intelligitur plurium corporum ad C 

delabentium tempora descensuum esse in sesquiplicata ratione distantiarum. 
[p. 116] 

 
Corollarium 2.  

288. Atque ad diversa huiusmodi centra virium corpora accedent temporibus, quae sint in 
ratione composita ex directa sesquiplicata distantiarum et inversa subduplicata 
efficaciarum. Est enim efficicaiia directe ut distance f quadratum.  
 

Scholion.  
289. Si sit vis centripeta reciproca ut cubus distantiae, prodit n = - 3 et 

,igitur Est  . 2
)(

2

22

22

223 ya
ay
f

ya
yaf vv −− =⎟
⎠
⎞

⎜
⎝
⎛=  et tempus per CP 

= ∫
− )22(

2 .
ya

ydy
ff

a = ⎟
⎠
⎞

⎜
⎝
⎛ −− )(. 222 yaa

ff
a .  

In circuli autem quadrante est PM = )( 22 ya − ; tempus ergo, quo CP absolvitur, est 

( )PMAC
ff

a −.2 , et tempus, quo totum spatium AC percurritur, erit 
ff

a
ff

a AC 22 2
seu  . . 

Consequenter tempus, quo portio AP percurritur, erit
ff

PMAC 2. . In hoc igitur casu 

tempus algebraice potest exhiberi, id quod etiam fit in hisce casibus, quibus n est 
terminus huius seriei etc.,,, 9

11
7
9

5
7

3
5 −−−−  Quae autem sint ipsa tempora saltem integra 

descensuum per AC, sumus investigaturi.  
 

PROPOSITIO 36.  
 

PROBLEMA.  
290.  Determinare tempus descensus per AC ad centrum virium C (Fig. 28), si vis 
centripeta proportionalia est reciproce huic distantiarum dignitati, cuius expons est 

12
12
−
+

m
m denotante m numerum integrum affirmativum. [p. 117] 
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SOLUTIO.  

 Retenentibus a, f, y, et v eosdem quos supra valores erit 12
12

−
−−= m

mn .Quo circa fit  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−−

−
−−

−
+

−

12
2

12
2

12
2

12
2

12
12

2
12

m
ym

m
ym

m
m

a

am fv   

adeoque  

∫ v
dy = .

12
12

12
2

)12(

2

−
+

−

−
m
m

m

fm

a ∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− −−

−

12
2

12
2

12
1

mm

m

ya

dyy ,  

quod integrale ita debet accipi, ut evanescat posito y = 0. Quo facto si ponatur y = a, 
prodibit tempus totius descensus per AC quaesitum. Ponatur 

dzzdyzybazy
m

mmm m 2
32

12
1

12
2

12
2

2
12  eterit  ,et  

−
−−− −=== = , quibus substitutis  fiet 

 

∫ v
dy = .

12
12

12
2

2

)12(

−
+

−
−

m
m

m

f

am
( )∫ −

−

zb
dzzm 1

. 

Ad ( )∫ −

−

zb
dzzm 1

 inveniendum pono b – z = u2, erit z = b – u2 et dz = -2udu  ideoque  

( ) )43
2.1

)2)(1(22
1

)1(112 etc.(2)(2
1

−+−−=−− −−−−−−−=
−

−
ububbduubdu mmmmmmm

zb
dzzm , 

cuius integrale est  
)43

5.2.1
)2)(1(22

3.1
)1(1 etc.(2 −+−− −−−−−− ububbuC mmmmmm , 

quae quantitas cum debeat evanescere facto y seu z = 0, i. e.  u2 = b, erit  [p. 118] 

)5.2.1
)2)(1(

3.1
)1( etc.1(2 2

1
−+−= −−−− mmmm

bC .  
Quia autem integrum tempus provenit facto y = a seu z = b, i. e. u = 0, remanebit pro 

integrali ipsius ( )zb
dzzm

−

−1
 sola quantitas C, quae loco 2

1
2

−m
b restituto a est 

= )7.5.2.1
)3)(2)(1(

5.2.1
)2)(1(

3.1
)1( etc.1(2 +

−−−−−− −+− mmmmmma . Totum ergo descensus tempus per AC 

aequalibitur facto  ex fm
m

m

m
m

f

a )12(2
12

2

12
2

−
−

−
 in hanc seriem 

etc.1 7.3.2.1
)3)(2)(1(

5.2.1
)2)(1(

3.1
)1(

+
−−−−−− −+− mmmmmm , quae toties abrumpitur, quoties m est numeris 

integer affirmativus. His igitur in casibus tempus algebraice potest exhiberi. Q. E. I.  
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Corollarium 1.  

291. Sit m = 1, quo casu est n = - 3, erit series = 1; tempus ergo descensus per AC 

prodibit  = 
ff

a

f

a f 2
2

2

2
2 = , ut supra (289) est inventum.  

Corollarium 2.  
292. Sit m = 2, quo casu fit n = 3

5−  , erit series valor  = 3
2 atque tempus totius descensus 

= .6.
3
4

3
4

3
2 f

f

a  Sin est m = 3, erit n = 3
7−  et series 5

4
3
2 . tempusque .10

5
6

5
6

5.3

4.2 f
f

a  Simili 

[p. 119] modo, si est m = 4, fit n = 7
9− , atque tempus prodibit = .14

7
8

7
8

7.5.3

6.4.2 f
f

a  

 
Corollarium 3.  

293. Colligitur ex his seriei valor generalis  = .)12...(7.5.3
)22...(6.4.2

−
−

m
m  Generatim igitur tempus 

descensus erit .)12(2
12

2

12
2

)12...(7.5.3

)22...(6.4.2 fm
m
m

m
m

fm

am −
−

−

−

−  Si quidem est n = 12
12

−
−−

m
m  seu m = 12

1
+
−

n
n .  

 
Corollarium 4.  

294. Successive ergo loco m positis valoribus 1, 2, 3, 4 etc. seriei valores sequentem 
constituent progressionem etc.,,,,1 7.5.3

6.4.2
5.3
4.2

3
2 in qua concessa circuli quadratura termini 

intermedii possunt exhiberi. Si enim est m = 2
1 , terminus respondens invenitur 2

π , 

denotante 1 : π rationem diametri ad peripheriam; si m = 2
3 , erit respondens termiuns 

22
1 .π , et ita porro si m denotet .etc,, 2

9
2
7

2
5 . proveient hi termini 

etc.,, 2.8.6.4.2
.7.5.3.1

2.6.4.2
.5.3.1

2.4.2
.3.1 πππ  
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Corollarium 5.  

295. Innotescit ergo etiam in his casibus tempus descendus per AC. Nam si est m = 2
1 , fit 

n = ∝− , quo casu tempus semper est infinite parvum. [p. 120] Sit ergo m = 2
3 , fiet n = - 

2, et tempus  descensus = f
aa

f

a f 2
..

.2.2

..1 4
2
3

2
3

ππ = , prorsus ut iam invenimus (287). Sit  

m = 2
5 , erit 2

3−=n  et tempus descensus = 
4
5

4
5

.4.2

...3.1

f

aπ f2. . Atque si m = 2
7 , erit 3

4−=n  et 

tempus descensus = 
6
7
6
7

.6.4.2

..5.3.1

f

aπ f3. . 

Corollarium 6.  
296. Generaliter igitur si fuerit m = 2

12 +k , quo casu fit k
kn 1−−= , erit tempus descensus 

..
2

12
2

12
.

2........6.4.2
)12.......(5.3.1 kf

k
k

k
k

f

a
k

k
+

+
− π  

 
PROPOSITIO 37.  

 
PROBLEMA.  

297.  Determinare tempus descensus per AC (Fig. 28) ad centrum virium C, si vis 
centripeta proportionalis est reciproce huic distantiarum dignitati, cuius expons est 

m
m 1− denotante m numerum integrum affirmativum. [p. 121] 

 
SOLUTIO.  

Est itaque m
mn −= 1 et propterea 

m
m

m

mm

f

yav −
−= 1

1

11

= .
111

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
mmm

m
yamf  Elementum igitur 

temporis, quod est  
v

dy , erit = dy : ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
mmm

m
yamf

111
et tempus ipsum per PC  

= 
m

m
mf

1
1

− ∫
− )

11
( mm

dy

ya

. 

Ponatur zyba mm ==
11

et  , erit ;1dzmzdy m−= fit igitur tempus per PC  

= m
m

mf
−1

( )∫
−

−

zb
dzmz 1

. 
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At integrale ipsius 
( )zb

dzmz
−

−1 , eodem modo quo in praecedente prop. sumtum, est 

)7.5.2.1
)3)(2)(1(

5.2.1
)2)(1(

3.1
)1( etc.1(2 2

12
+

−−−−−− −+−
− mmmmmmm

b .  

 

Quamobrem integrum tempus descensus per AC, posito 2
12

2
12

  loco
−− m

m
m

ba , erit 

= m
m

m
m

fma
−− 112

2 ducto in hanc seriem  

)7.5.2.1
)3)(2)(1(

5.2.1
)2)(1(

3.1
)1( etc.1(2 2

12
+

−−−−−− −+−
− mmmmmmm

b  

Quoties igitur m est numerus integer affirmativus, toties series abrumpitur, ita ut tempus 
quaesitum algebraice exprimatur. Q. E. I.  

 
Corollarium 1.  

298. Sit m = 1, quo casu est n = 0, est vis centripeta propterea uniformis ac gravitati 
aequalis. Series ergo erit = 1, et tempus descensus per AC = a2 , omnino ut iam §219 
est inventum modo neglecta littera m.  
[p. 122] 

Corollarium 2.  

299. Sit m = 2, ut sit n = 2
1− ; erit tempus totius descensus .22.

4
1

4
3

3
2

−

fa  

Sit m = 3, ut sit n = 3
2− ; totumque tempus totius descensus  

= .32.
3
1

6
5

5.3
4.2

−

fa  

Simili modo, si m = 4 et propterea n = 4
3− , prodit tempus descensus  

= etc. 42.
8
3

8
7

7.5.3
6.4.2

−

fa  

 
Corollarium 3.  

300. Generaliter igitur quicquid sit m ideoque  n = m
m−1 ; erit tempus totius descensus 

totius per AC  

= . 2.
2

1
2

12

)12.....(7.5.3
)22......(6.4.2 mfa

m
m

m
m

m
m

−−

−
−  

 
Corollarium 4.  

301. Iisdem quibus supra (294) interpolationibus adhibitis poterunt tempora descensuum 
assignari, si m est numerus quicunque integer affirmativus 2

1+ . Sit nimirum 2
1=m , quo 

casu fit n = 1; erit tempus descensus = f22
π  prorsus ut § 283, ubi idem casus, quo n = 1 

seu vis centripeta distantiis proportionalis, est pertractatus.  
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Corollarium 5.  

302. Si  m = 2
3 , seu n = 3

1− , sit tempus  descensus = ;.6.
3
1

3
4

22
1

−

faπ  si m = 2
5 ,  

seu n = 5
3− , prodit tempus  descensus = ..10..

5
3

5
8

24
3

2
1

−

faπ  Atque generaliter casu, quo 

m
mn −= 1 , reperitur tempus  descensus 

 

= .24.
112

2)12.....(6.5.2
)22......(5.3.1 m

m
m
m

famm
m

−−

−
− π  

[p. 123] 
 

Scholion.  
303. Intelligitur ex hisce, quibus casibus tempora descensuum algebraice possit exprimi, 
vidilicet, quando est m

m
m
m nn −
−
−− == 1
12
12   vel  et m significat numerum affirmativum 

integrum quemcunque. Atque praeter hos casus dubito, an quisquam alius detur. Deinde 
etiam apparent casus, quibus temporis definitio a circuli quadratura pendet, hique 
habentur, si fuerit 

m
m

m
m nn 21

21
12
1   vel vel +

−
−
−− ==  

denotante m ut supra numerum quemcunque integrum affirmativum. Neque vero hi sunt 
omnes casus, qui ad circuli quadraturam deducuntur; namque singularis casus, si n = - 1, 
quoque a circuli quadratura pendet, ut sequenti propositione demonstrabimus. At vero 
hoc differt iste casus ab illis, quod hic in temporis expressione non π, sed π occurrat; et 
praeterea etiam totum duntaxat descensus tempus π involvat, dum tempus per quodvis 
spatium indefinitum nonnisi quadraturis transcendentium curvarum potest exhiberi.  
 

PROPOSITIO 38.  
 

THEOREMA.  
 

304.  Existente vi centripeta reciproce distantiis a centro virium C (Fig. 28) proportioni 

erit tempus descensus integri per AC =
f

a π denotantes a spatium AC, f distantium, in 

qua vis centripeta est gravitati aequalis, et π : 1 rationem peripheriae ad diametrum.  
[p. 124] 

 
 
 
 
 



EULER'S MECHANICA VOL. 1.  
Chapter Three (part b).  

 Translated and annotated by Ian Bruce.                                page 177 
DEMONSTRATIO.  

Quia in quovis puncto P altitudo celeritati debita est y
afl (266), erit ipsa celeritas = 

y
afl  et tempus per spatium PC =

f
1 . ∫

y
al

dy . Huius ergo integrale ita acceptum, ut 

evanescat facto y = 0, dabit verum tempus per PC.  Quare si in hac expressione tum 
ponatur y = a, prodibit totum descensus tempus per AC. Ponatur autem y = az et 
habebitur 

f
a . ∫

−lz
dz . Demonstravi vero in Commentariis Academiae Scientiarum 

Petropol. Anno 1730 hanc quantitatem ∫
−lz
dz , si ponatur z = 1 seu y = a, definire in hac 

progressione 1, 2, 6, 24 etc. eum terminum, cuius index sit 2
1−= , quem alia methodo 

ibidem ostendi esse π= . [Vide : E 019; et quoque Opera Omnia, series II, vol. 5, Sur le 
temps de la chute d'un corps ....pp. 250 – 260.] Ex quo intelligitur tempus totius 

descensus per AC esse 
f

a π . Q. E. D.  

Corollarium.  
305. Si ergo plura corpora ad idem centrum C ex diverse diatantiis delabantur, erunt 
eorum tempora descensuum ipsis distantiis proportionalia.  
 

  Scholion 1.  
306. Neglexi in hac propositione fractionem 250

1 , quae in temporis expressinem, 

integratione spatii elementi per radicem quadratam altitudinis celeritati debitae divisi 
erutam, est multiplicanda (222), quippe quae ad tempus in minutis secundis inveniendum 
inservit, si longitudines in scupulis pedis Rhenani exponitur. Simili modo etiam in [p. 
125] sequentibus tempora, nisi in minutis secundis desiderentur, sum definiturus, ad 
ambages vitandas. Facile enim apparet ad numerum minutorum secundorum 
inveniendum nil aliud esse faciendum, nisi ut huiusmodi temporis expressiones per 250 
dividantur atque longitudines in scupulis pedis Rhenani exhibeantur, uti iam saepius est 
inculcatum.   
 

Scholion 2.  
307. Omnino paradoxon hoc videbitur, quod integrale ipsius 

lz
dz
−

 posito z = 1, fiat 

= π . Nullo enim modo quisquam hoc directe poterit demonstrare; neque ego hanc 
aequalitatem nisi a posteriori cognovi, quemadmodum ex citata dissertationes videre 
licet. Eosdem igitur reddunt valores haec duo integralia ∫ −lz

dz et ∫ − )1( 2
2

z
dz , si post 

integrationem ponatur z = 1, neque tamen ipsa sunt inter se aequalia; immo nequidem se 
possunt comparari.  
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PROPOSITIO 39.  

 
THEOREMA.  

 
308.  Si vis centripeta fuerit ut potestas exponentis n distantiarum et plura corpora ex 
diversis distantiis ad idem centrum delabantur, erunt descensuum tempora potestatibus 
distantiarum, quarum expones est 2

1 n− , proportionalia.  
 

DEMONSTRATIO.  
Sit corporis cuiusvis a centro C distantia AC = a et f distantia, in qua vis centripeta 
gravitati aequalis est. [p. 126]  Deinde cum pervenerit corpus in P, ponatur CP = y et 
altitudo celeritati in hoc loco debita = v, erit  

.
)1(

11

n

nn

fn
yav

+
− ++

=  

Tempus ergo, quo CP absolvitur, est  
 

= nfn )1( + ∫ ++ −
.

11 nn ya
dy  

Quod integrale quanquam exhiberi non potest, tamen ita erit comparatum, ut a et y in 
singulis terminis 2

1 n−  dimensions constituant, quia in differentiali eundem dimensionum 
numerum efficiunt, considerato dy tanquam una dimensione. Quamobrem si post 
integrationem ponatur y = a, quo casu tempus totius descensus provenit, habebit solum a 
totidem, videlicet 2

1 n− , dimensiones seu erit multiplum ipsius 2
1 n

a
−

. Quare, cum alter 
factor non complectatur nisi f  et numeros ideoque eundem valorem retineat, utcunque a 

varietur, erunt diversorum descensuum tempora ut 2
1 n

a
−

, i. e. ut potestates distantiarum, 
quarum expons est 2

1 n− . Q. E. D.  
 

Corollarium 1.  

309. Quo igitur omnia descensuum tempora sint inter se aequalia, oportet, ut 2
1 n

a
−

sit 
quantitas constans, utcunque a mutetur, id quod accidit, si n = 1 seu vis centripeta 
distantiis directe proportionalis, uti iam observavimus (283). [p. 127] 

 
Corollarium 2.  

310. Simili modo ex his statim apparet, si vis centripeta est reciproce ut quadratum 
distantiae seu n = - 2, tempora descensuum ad hoc centrum esse inter se ut distantiae 
elevatae ad exponentem 2

3 seu in sesquiplacata distantiarum ratione (287).  
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Corollarium 3.  

311. Si fuerint plura similiter attrahentia virium centra, sed efficacia differentia, et ad ea 

corpora ex aequalibus distantiis delabantur, erunt tempora inter se ut 2
n

f , quia a ut 
constans, f vero variabilis consideratur. Est vero efficacia ut vis centripeta in data 
distantia, puta 1, erit ergo fn reciproce ut efficacia, atque tempora illa inter se in reciproca 
subduplicata efficaciarum ratione (285).  
 

Corollarium 4.  
312. Et si ad diversa huiusmodi virium centra corpora ex quibuscunque distantiis 
delabantur, erunt eorum tempora descensuum in ratione composita ex directa 2

1 n− -plica 
distantiarum et reciproca subduplicata efficaciarum.  
 

Scholion.  
313. Ex his, quae de viribus centripetis dicta sunt, abunde perspicitur, quomodo motus 
corporum inveniri oporteat, si loco vis centripetae vis centrifuga seu pellens corpus de 
centro substituatur. Omnia enim manent ut in praecedentibus, nisi quod loco formulae 

vim centripetam exprimentis, [p. 128] quae erat n

n

f
y  (264), eius negativa debeat adhiberi. 

Neque tamen superfluum iudico de has casibus quaedam afferre; cognoscentur enim ex 
his generales quaedam regulae ad motus generationem a potentiis pertinentes, quae ex 
solo calculo non possunt deduci. Respiciunt ea autem actionem potentiarum in corpora 
quiescentia, ad quae calculus noster, quippe quo ponitur celeritatis incrementum respectu 
prioris infinite parvum, minus recte accommodatur et reipsa absurdi quid praebet, nisi 
primum spatii elementum tempusculo infinite parvo percurritur. Ad hoc autem 
dilucidandum hoc utor axiomate, quod corpus in ipso centro virium repellente positum 
perpetuo ibi sit permansurum, si vis centrifuga in ipso illo puncto fuerit infinite parva seu 
nulla; id quod evenit, quando exponens dignitatis distantiarum, cui vis centrifuga est 
proportionalis, est numerus nihilo maior seu positivus.  
 

PROPOSITIO 40.  
 

PROBLEMA.  
 

314.  E centro virium C (Fig. 29) a se repellente in ratione 
n-plicata distantiarum egrediatur corpus in recta CP; 
requiritur eius celeritas in loco quovis P et tempus, quo 
spatium CP percurritur.  

 
SOLUTIO.  

 Si f distantia, in qua vis centrifuga aequalis est gravitati, 
et vocetur CP y atque altitudo celeritati in P debita v. [p. 

129] Erit ergo vis, qua corpus in P urgetur, = n

n

f
y  et 
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proptera n

n

f
dyydv =  (213), quia corpus motu accelerato propellitur. Quare, cum corpus in 

C celeritatem nullam habere ponatur, erit n

n

fn
yv

)1(

1

+

+

= , si fuerit n + 1 numerus positivus; 

sin autem negativus, fiet v infinitum. Ex hoc prodit tempus, quo spatium CP percurritur,  
 

= nfn )1( + nn
n yfnydy

n
−

− +=∫
+ 1

1
2 )1(: 2

1
,  

si quidem y1-n sit = 0 posito y = 0. Nam si fuerit infinitum, tempus quoque prodiret 
infinitum ob addendam constantem infinite magnam; id quod inducio esset corpus 
nunquam ex C egressurum. Tempus igitur erit  

nn
n yfn −

− += 1
1

2 )1( ,  

quoties et 1 – n et n + 1 fuerint numeri positivi. Q. E. I.  
 

Corollarium 1.  
315. Sunt vero hi ambo numeri 1 – n et n + 1 affirmativi, si n contineatur intra hos limites 
– 1 et + 1. Atque si n illum terminum – 1 transcendit, celeritas ubique erit infinita; et se 
hunc + 1 transgreditur, tempus erit infinitum.  

 
Corollarium 2.  

316. Constat corpus nunquam esse egressurum autem ex ipsa rei natura, si n fuerit 
numerus nihilo maior, (313). Hanc ob rem necesse est, etsi n contineatur intra 0 et + 1, 
calculum hic adhibitum, quippe qui tempus indicat finitum, fallere. [p. 130] 

 
Corollarium 3.  

317. Tempora haec autem sequuntur ex celeritatibus, ergo et in his ipsis absurdum inesse 
debebit, quoties n comprehenditur intra 0 et + 1. Neque enim hae celeritates generari 
poterunt, cum corpus nunquam ex C egrediatur.  
 

Scholion 1.  
318. Sit curva AM (Fig. 30) talis, ut denotantibus abscissis AP = 
y applicata PM sit = v. Haec curva, contento n intra hos limites 0 
et + 1, hanc habebit proprietatem, ut ipsa in A cum axe 
confundatur hocque loco curvedinem habeat infinite magnam, 
nempe radium oscili evanescentem.  
 

Corollarium 4.  
319. Quoties igitur accidit, ut scala celeritatum seu potius 
altitudinum celeritatibus debitarum huiusmodi habeat formam, toties iudicandum est eam 
a nulla potentia generari potuisse, etiamsi calculus aliter ostendat, sed esse casum penitus 
imaginarium ac in rerum natura non existentem.  
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Scholion 2.  

320. Ratio huius aberrationis calculi a natura in ipso 
principio motus sine dubio est sita, atque hoc loco lex 
alias universalis de celeritatis incremento a potentiis 
producto perperam adhibetur. Quoniam enim, ut iam 
animadvertimus (313), haec lex locum habet tantum, 
quando corpus finitam iam habet celeritatem, semper in 
principio motus temere usurpatur. [p. 131]Cum autem 
iste error in ipso primi tantum elemento insit, plerumque 
est infinite parvus et hanc ob rem non est respiciendus. 
Est vero infinite  parvus, quoties primum elementum 
spatii tempusculo infinite parvo percurritur, tum enim 
neque in celeritatibus neque in temporibus considerabile discrimen poterit producere. 
Evenit hoc, si potentia, qua corpus in ipso principio motus sollicitatur, est finitae 
magnitudinis vel etiam infinitae magnae; perspicuum enim est hoc casu primum 
elementum temporis puncto percurri. At si potentia, ut in nostro casu usu venit, in 
principio est infinite parva seu potius nulla, ad primum tantum elementum absolvendum 
non modo finito, sed etiam infinitio opus est tempore, quia corpus quiescens a nulla 
potentia pulsum de loco suo nunquam excedet. In reliquis quidem casibus, quibus n est 
non solum nihilo, sed etiam unitate maior, tantus est error, ut etiam calculus infinitum 
tempus per primum elementum ostendat. Verum, si n intra 0 et 1 comprehenditur, vitium 
calculi animadvertitur; hocque idea, uti videtur, quia his casibus scala potentiarum 
formam habet curvae AM (Fig. 31), quae axi AP in A ad angulos rectos occurrit. Statim 
enim in proximo ipsi A puncto a linea ab potentiam exprimens infinite maior est sagitta 
Aa; perinde autem est in motus computatione, sive corpus elementum percurrens 
consideretur a potentia, quae initio agit, sollicitatum, sive ea, qua in fine elementi urgetur. 
In hoc autem casu evidens est errorem nasci oportere [p.132] , si corpus per totum 
elementum Aa a potentia ab sollicitatum consideretur.  
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PROPOSITIO 41.  

 
PROBLEMA.  

 
321.  Si fuerit vis centripeta functioni cuicunque distantiarum a centro C (Fig. 32) 
proportionalis corpusque ex A ad id  delabatur, requiritur celeritas eius in puncto 
quocunque P atque tempus, quo spatium AP percurritur.  

 
SOLUTIO.  
 Repraesentet curva BMD scalam potentiarum seu 
legem vis centripetae, ita ut corpus in P trahatur 
ad C a potentia PM, quae sit ad vim gravitatis ut 
haec PM ad rectam constantem AE, qua vis 
gravitatis exprimitur. Sit nunc AP = x, PM = p, 
AE = 1 et altitudo celeritati in P = v. Vis igitur 
accelerans est p, et propterea, sumpto elemento 
Pp = dx, erit dv = pdx (213). Ex qua prodit 
integrando ∫= pdxv . At ∫ pdx  exprimit aream 

ABMP; hanc ob rem habebitur AE
ABMPv = , 

completa homogeneitate recte AE = 1. Cognita nunc altutidine v erit tempus, quo spatium 
AP percurritur, = ∫ ∫ pdx

dx , quod, quia  p per x dari ponitur, per quadraturas innotescit. 

Q.E.I. 
 

Corollarium 1.  
322. Perspicitur ex his, si corpus ea celeritate, quam in C acquisivit, retro moveatur 
sursum, motum eius ascensus similem fore descensui atque in puncto P [p. 133] eandem 
habiturum esse celeritatem, quam habuit ante, et proinde tempus quoque ascensus per CP 
aequale esse debere tempori descensus per idem spatium.  
 

Corollarium 2.  
323. Posuimus hic corpus in A celeritatem habere nullam atque ex quiete motum 
inchoare. Sed non difficilior evadit calculus, si ei in A celeritas quaecunque tribuatur; hoc 
enim casu differentiale pdx ita debet integrari, ut facto x = 0 ipsum ∫ pdx  preabeat 

altitudinem celeritati initiali debitam. Tempus vero ex ∫ pdx  hac ratione accepto 

invenietur similiter ut supra.  
 

Scholion 1.  
324. Assumsimus quidem p esse functionem ipsius x et propterea non respicere centrum 
virium C, sed tantum motus initium A. Nihilo tamen minus casus propositionis in 
solutione continetur; si enim p est functio ipsius distantiae CP a centro virium C, quam 
vocemus y, erit y = a – x , posito toto spatio AC = a, et hanc ob rem p denotabit 
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functionem ipsius a – x, i. e. functionem ipsius x et constantium, ut assumsimus. Nostra 
vero solutio latius patet, determinat enim motum corporis a quacunque potentia sollicitati, 
nullo respectu ad certum aliquod punctum fixum habito, dummodo hae potentiae ubivis 
eandem directionem teneant. Nisi enim hoc fiat, corpus cessabit in linea recta moveri, sed 
in curva incedet, de quo motu in sequentibus tractibimus. [p. 134] 
 

Scholion 2.  
325. Determinavimus hactenus motus corporis rectilineos ex data potentia; nunc vero 
pertractanda restat altera huius capitis pars, qua ex data motus conditione potentiarum 
legem definiri oportet. Sit vero hoc vel ex datis celeritatibus vel temporibus, utrumque 
autem duplici modo est pertractandum. Vel enim respicitur ad unicum descensum seu 
ascensum, in cuius singulis punctis datae ponuntur vel celeritates vel tempora, quibus 
quaeque spatii portiones percurruntur. Vel considerantur infiniti descensus ad punctum 
fixum ex diversis altitudinibus facti, in quibus dantur vel celeritates ultimae vel tempora, 
quibus singuli descensus integri absolvuntur. Ex his igitur quatuor oriuntur problemata 
primaria, quorum solutiones hic exhiberi oportet. Praeter haec vero aliae afferuntur 
quaestiones, in quibus neque solae celeritates neque sola tempora dantur, sed aliud 
quiddam, quod ex utrisque sit compositum; cuiusmodi vero quaestiones, cum 
innumerabiles possent excogitari, aliquas tantum magis insignes, et ex quarum 
solutionibus simul reliquarum solutiones possint intelligi, in medium proferemus.  
 

PROPOSITIO 42.  
 

PROBLEMA.  
 

326.  Data corporis rectam AP (Fig. 22) percurrentis in singulis punctis celeritate, 
requiritur potentiae lex, quae hunc motum corpus sollicitando efficere valet. [p. 135] 

 
SOLUTIO.  

 Percurso quovis spatio AP, quod ponimus = x, sit altitudo celeritati, quam corpus in P 
habet, debita = v, quae proinde data et ipsius x et constantium functio quaedam esse 
ponitur. Potentia vero in P agens, quam quaerimus, sit = p, quae ergo ex corporis 
acceleratatine dv, dum elementum Pp = dx percurrit, inveniri poterit. Cum enim sit dv = 
pdx (213), erit dx

dvp = , seu ista potentia quaesita se habebit ad vim gravitatis ut 

incrementum altitudinis celeritati debitae ad spatii elementum, quod interea percurritur. 
Q.E.I.   

Corollarium 1.  
327. Si fuerit v = x seu spatium descriptum ea ipsa altitudo celeritati debita, fiet dv = dx 
et p = 1, id quod indicat potentiam hunc motum producentem esse uniformem et ipsi 
gravitati aequalem.  
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Corollarium 2.  

328. Si ipsae celeritates ponantur spatiis percurris proportionales, erit f
xv

2
= , denotante f 

constantem requisitam; fit ergo f
x

f
xdx pdv 22 et  == . Quamobrem potentia erit spatiis 

percurris proportionalis.  
Scholion 1.  

329. Constat autem ex superioribus hunc casum existere non posse; nam quia potentia in 
ipso motus initio A est nulla, [p. 136] corpus ex hoc puncto nunquam egreditur, sed ibi 
perpetuo quiescet. Idem commonstrat temporis per AP computatio, quod erit = fx

dx∫ , 

quae quantitas est infinita, si quidem integrale ita accipitur, ut evanescat posito x = 0.  
 

Corollarium 3.  
330. Quo igitur hoc non eveniat, oportet, ut dx

dv sit eiusmodi quantitas, quae facto v = 0 

non evanescat, sed quae vel fiat finita vel infinita. Ex quo perspicitur scalam altitudinum 
celeritatibus debitarum AM (Fig. 30) in qua sumtis AP = x applicatae PM repraesentent 
has altitudines v, non debere in A in axem incidere, sed angulum cum eo finitum 
constituere oportere.  

Scholion 2.  
331. Haec intelligenda sunt tantum de iis casibus, quibus corporis celeritas in A 
evanescens ponitur et scala AM cum axe in A concurrit. Aliter enim se res habet, si corpus 
in A celeritatem iam habet, qua, etiamsi potentia sit nulla, tamen ex A progredi 
potentiaeque actionem subire potest, ita ut non opus sit tempore infinito ad spatium AP 
absolvendum.  

PROPOSITIO 43.  
 

PROBLEMA.  
 

332.  Dato tempore, quo corpus in recta AC (Fig. 32) progrediens percurrit singula 
spatia AP, oportet definire legem potentiarum, qua efficitur, ut corpus hoc motu feratur.  

[p. 137] 
SOLUTIO.  

  Dato spatio AP =  x et tempore, quo percurritur, = t , quia expressionis temporis 
quadratum unicam habet dimensionem, sit potentia quaesita = p et altitudo celeritati in P 
= v; hac enim opus est ad inveniendum p, quamvis ex calculo exire debeat. His positis 
erit ut ante dv = pdx et v = ∫ pdx . Tempus igitur t = ∫ ∫ pdx

dx , ex qua aequatione sumtis 

differentialibus prodit 2

24
2

 and 
dt
tdx

pdx
dx

dt
dt pdx == ∫∫

,cuius si denuo sumatur 

differentialis posito dx constante habebitur 3
84

dt
tdxddt

dt
dxp −= . Q.E.I.  
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Corollarium 1.  

333. Si ponatur tempus ipsum = T neglecta homogeneitate, erit t = T2,  atque prodibit 

3
2

dT
dxddTp −= .  Quae expressio simplicior est superiore et facilius ad casus speciales 

accommodatur.  
Corollarium 2.  

334. Si tempora ponantur spatiis descriptis proportionalia, erit T = x et ddT = 0, ob dx 
constans. Consequenter potentia erit nulla, qua indicatur corpus vi insita hunc motum 
aequabilem continuare.  
 

Scholion.  
335. Notandum hic est pro T eiusmodi accipi debere functionem ipsius x, quae cum fiat = 
0, posito x = 0, tum crescentibus x crescat quoque. [p. 138] Fieri enim omnino non 

potest,ut corpus moveri pergat, tempus vero diminuatur. Ponamus v. g. )2( 2xaxT −= , 
quae quantitas ad certum tantum terminum crescit crescente x, tum vero decrescit. Erit 
ergo  et   232

22

2 22 /)xax(
dxaddT

)xax(
xdxadxdT

−
−=

−
−= . Ex his fit 3

2

)(
2

xa
ap
−

= , seu posito AC = a 

sollicitabitur corpus in P ad C vi cubo distantiae a C reciproce proportionali. Tempus 

vero )2( 2xax −  ulterius non valet quam usque ad C, quo x = a. Sed de hoc casu iam 
est actum (289). Quare ex hoc concludi videtur corpus, cum in C pervenerit, ex eo 
nunquam esse egressurum, quod autem quomodo fieri possit, cum celeritas eiuss in C sit 

infinite magna, nullo modo concipi potest. Accedit quod, cum sit ,v xa
)xax(

dT
dx

−
−==

22  

celeritas corporis, cum ultra C progrediatur, deberet esse negativa, ideoque corpus a C 
non recederet, sed ad C accederet, quae ita pugnant, ut etiam nunc conciliari nequeant.  
 

Corollarium 3.  
336. Cum sit elementum temporis 

v
dxdT = , erit celeritas corporis in quovis loco 

dT
dxv = ; ex data ergo temporum lege simul celeritas corporis in sungulis locis 

innotescit, quod quidem ex ipso nexu inter celeritates et tempora consequenter nullo 
respectu habito ad potentiam (37). [p. 139] 
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PROPOSITIO 44.  

 
PROBLEMA.  

 
337. Si corpus in recte AP (Fig. 33) ita descendat, ut ea celeritate, quam in P habet, 
eodem tempore, quo spatium AP percurrit, progredi possit motu uniformi per spatium 
PM, applicatum curvae AM datae, determinari oportet legem potentiae sollicitantis, qua 
talis motus generatur.  

SOLUTIO.  
  Posito AP = x et PM = s, erit s ob datam curvam AM 
functio ipsius x. Sit porro potentia  in P corpus sollicitans 
= p, altitudo celeritati in P debita = v et tempus, quo 
spatium AP absolvitur, = T. Quam iam spatium s tempore 
T celeritate v absolvitur motu aequabili, erit 

v
sT =  et 

∫ ∫
=

pdx
dxT , quocirca habebitur 

∫∫
=∫ pdx

s
pdx

dx , vel 

relicto v loco ∫ pdx , quo calculus concinnior reddatur, 

erit 
v

s
v

dx =∫ . Quae differentiata dat  
vv

sdv
v

ds
v

dx
2

−= , 

ex qua deducitur haec equatio s
dx

s
ds

v
dx 22 −= , cuius integralis est ∫−= s

dxlslv 22 , seu 
22 sev s

dx∫−= , denotante e numerum, cuius logarithmus est 1. Sumantur iterum 
differentialia, prodibit )(2 2 sdxsdsepdxdv s

dx
−== ∫− . Ex qua tandem elicitur  

)(2 2
dx

dxdss
dx

sep −∫−= . 

Innotescit igitur potentia quaesita p ex ista aequatione, quia s in x dari ponitur. Q.E.I. 
[p. 143] 

Corollarium 1.  
338. Quia est 22 sev s

dx∫−= , habebitur hinc ipsa corporis, quam in P habet, celeritas 
sev s

dx∫−= . Quam autem constantem in integratione ipsius s
dx addi oporteat, mox 

docebitur.  
Corollarium 2.  

339. Tempus quoque T, quo spatium AP percurritur, facile ex hisce deducitur. Nam cum 
sit 

v
sT = , habebitur ∫= s

dx
eT . Cum igitur debeat T evanescere facto x = 0, oportet 

ipsum s
dx ita integrari, ut ∫ s

dx
e evanescat facto x = 0. Quamobrem necesse est, ut fiat 

∝−=∫ s
dx , si ponatur x = 0.  
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Corollarium 3.  

340. Sit nxs = , erit lclxns
dx +=∫ 1 . Quicquid igitur c denotet, semper ∝−=∫ fit s

dx  

posito x = 0. Quare erit Tcxe ns
dx

==∫ 1
. Consequenter prodibit 

n
n

n
n

xvxp c
n

c
)n(n 12

2  atque 12 −−

== − .  

 
Corollarium 4.  

341. Si ponatur xs = , perspicuum est motum in AP uniformem esse debere, id quod 
etiam calculus ostendit. Fit enim n = 1 adeoque p = 0 et c

nv =  seu constanti. [p. 144] 

 
Corollarium 5.  

342. Si n est unitate minor, celeritas in ipso puncto A fit infinite magna, atque etiam 
potentia p ; erit enim reciproce ut potestas exponentis n

n−2 spatiorum percursorum.  

 
Corollarium 6.  

343. Si n est unitate maior, attamen binario minor, sit quidem celeritas in A = 0, sed 
potentia manet in A infinite magna decrescitque in ratione quadam multiplicata spatiorum 
percursorum.  

Corollarium 7.  
344. Si n = 2, habemus casum potentiae uniformis. Fit enim 2

4
c

p =  et xv c
2= . 

Hancque proprietatem iam demonstravimus propositione 230, ubi ostendimus corpus in 
hac potentiae uniformis hypothesi ex quiete descendens tantam quovis spatio percurso 
acquirere celeritatem, quo eadem tempore uniformiter posset duplum spatium percurrere.  
 

Corollarium 8.  
345. Sin vero n binarium excedat, prodeunt ii casus, quos diximus (319) in rerum natura 
locum obtinere non posse, quamvis calculus aliter ostendat. Fit enim celeritas in A nulla, 
ibidemque potentia sollicitans evanescit, quamobrem corpus nunquam ex A exire poterit, 
non obstante calculo, qui tempus T per spatium quodvis AP exhibet finitum.  
[p. 142] 

Scholion.  
346. Huius propositionis casus est ergo eiusmodi, ut data motus conditio sit ex celeritate 
et tempore permixta, ex qua legem potentiarum erui oporteat. Plura vero huiusmodi 
exempla afferre supervacaneum foret, cum ex hoc uno omnium reliquorum solvendorum 
modus perspiciatur.  
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PROPOSITIO 45.  
 

PROBLEMA.  
 

347. Datis celeritatibus, quas corpus ex quibuscunque distantiis ad centum virium C (Fig. 
34) accedens in ipso centro C acquirit,  definire legem vis centripetae huiusmodi 
descensus producentis, posito, quod corpus singulos descensus ex quiete incipiat. 
  

SOLUTIO.  
  Repraesentet CM scalam altitudinum celeritatibus, 
quas corpus in puncto C acquirit, debitarum, ita ut PM sit 
ipsa altitudo debita celeritati, quam corpus ex P 
descensum inchoans in C adipiscitur. Curva vero DN sit 
scala potentiarum quaesita, cuius scilicet applicatae PN 
exhibeant vim centripentam corpus in punctis P 
sollicantem; linea vero CB designet vim centripetam vi 
gravitatis aequalem. His positis atque corpore ex P ad C 
descendente erit altitudo celeritati eius in C debita 
aequalis areae CDNP applicatae ad BC (321). 
Quamobrem erit BC

CDNPPM = . Vocentur nunc CP y, PM 

v et PN p; [p.143] positoque BC = 1 erit ∫= pdyp  et differentiando dv = pdy. Quare cum 

detur v in y, erit dy
dvp = . Q.E.I. 

 
Corollarium 1.  

348. Sint celeritates in C acquisitae ut spatia percursa, erit v  ut y et conseqenter p ut y. 
Vis centripeta igitur proportionalis est distantiis a centro C. 
 

Corollarium 2.  
349. Si celeritates in C acquisitae dignitati exponentis n distantiarum a centro C 
proportionales ponantur, erit v ut ny2 , ergo p ut 12 −ny . Potentia igitur seu vis centripeta 
distantiarum dignitati 2n – 1 est proportionalis. 

 
Corollarium 3.  

350. Quia celeritas in C acquisita, cum fuerit y = 0, debet esse quoque = 0 et praeterea 
maiori distantiae y maiori celeritas respondere debeat, non poterit non n numerum 
affirmativum significare. 

Corollarium 4.  
351. Potentia autem p erit constans, cum sit 2

1=n ; quo numero si n fuerit minor, erit vis 

centripeta reciproce ut dignitas quaedam distantiarum a centro C. Sin n fuerit  > 2
1  , erit p 
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directe ut huiusmodi dignitas quaedam. In illo casu ergo vis centripeta in C erit infinite 
magna et decrescet crescentibus distantiis; hoc vero casu erit in C = 0 crescetque 
crescentibus distantiis. [p. 144] 

Corollarium 5.  
352. Cum sit CB

CDNPPM = , perspicuum est curvam CM esse etiam scalam altitudinem 

celeritatibus debitarum, cum corpus ex C egrediatur in recta CP, vi centripeta in 
centrifugam mutata, atque motum a quiete incipiat. (321) 
 

Scholion.  
353. Quanquam autem hoc modo problema reductum sit ad prop. 42 (326) transmutata vi 
centripeta in centrifugam, tempus tamen ascensus per CP in casu vis centrifugae non erit 
aequale tempori descensus per PC in casu vis centripetae. Neque enim aequalitas 
celeritatum, quae in utroque casu per aequalia spatia generantur, temporum aequalitatem 
inducit, sed ex ipso etiam intuitu contrarium apparet. Nam quoties vis centripeta in C est 
= 0, etiam vis centrifuga in evanescit ; quamobrem tempus ascensus per CP erit infinitum 
(314), cum tamen descensus absolvatur tempore finito. Nullum igitur adminiculum ex 
ista similitudine celeritatum ad solutionem sequentis problematis suppeditatur. In 
sequenti autem propositione dari ponuntur tempora, quibus singuli descensus 
absolvuntur, eaque non solum est difficillima solutu, sed ex scala temporum nequidem 
scala potentiarum ullo modo potest construi. Quocirca non nisi casus particulares in hac 
propositione complectemur, quorum solutio vires nostras non superat. [p. 145] 
 

PROPOSITIO 46.  
 

PROBLEMA.  
 

354. Si fuerit tempora, quibus corpus ex quibuscunque distantiis PC (Fig. 35) ad centrum 
virium C pervenit, in ratione quacunque multiplicata distantiarum, definire legem vis 
centripetae. 
  

SOLUTIO.  
  Sint ista tempora ut potestates distantiarum exponentis 
n, sitque curva DN scala vis  centripetae quaesita, ita ut 
applicata πv exponat potentiam, qua corpus in π existens 
ad C urgetur, repraesentante CB vim gravitatis. His 
positis descendat corpus ex puncto quocunque P, et 
ponatur distantia PC = a, erit ergo tempus descensus per 
PC ut an, quamobrem id ponamus = Can, denotante C 
quantitatem constantem, in qua a non insit, quia a ob 
punctum P variabile reipsa est quantitas variabilis. 
Pervenerit nunc corpus in locum quemcunque π et 
vocetur ,xC =π erit altitudo celeritati eius in hoc loco 

debita = BC
vDCCPND

BC
PNv ππ −=  (321).  Ponatur autem area CPND = A et area CπvD = X 
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atque BC = 1; erit ergo altitudo celeritati in π debita = A – X et ipsa celeritas = .)( XA −  
Notandum hic autem est X esse functionem quandam ipsius x et constantium, in qua non 
sit a; area enim CπvD non pendet a puncto P, sed retinet eundem valorem, ubicunque 
accipiatur punctum P, dummodo distantia Cπ maneat eadem. Qualis autem X est functio 
ipsius x, talis etiam esse debebit A functio ipsius a; abeunte enim x in a functio X 
transmutabitur in A. [p. 146] Iam tempus, quo hoc descensu spatium Cπ percurritur, erit = 

∫ − )( XA
dx , quod integrale ita debet esse sumtum, ut facto x = 0 ipsum evanescat. Ex hac 

igitur expressione habebitur integrum tempus descensus per PC, si ponatur x = a, quo 
casu X quoque transmutatur in A. Quia autem haec resultans quantitas ita debet esse 
comparata, ut in ea a habeat n dimensiones (oportet enim eam aequalem esse ipsi Can), in 
indefinito integrali ∫ − )( XA

dx  a et x simul habeant necesse est ubique n dimensiones. 

Quamobrem etiam formula differentialis 
)( XA

dx
−

 n habebit dimensiones, 

dimensionemque unam constituere existimanda sunt tam a et x quam dx. Perspicuum 
igitur est in nXA −− 1  inesse debere dimensiones atque in 

nXA 22 −− dimensiones ipsarum a et x. Sed quia in X non inest a, debebit X functio 

esse n22 −  dimensionum solius x; aliud ergo X esse non poterit nisi nbx 22− , et propterea 
erit nbaA 22−= . Constans quidem quantitas ad nbx 22−  addici potest, cum ea, quia ad 

nba 22− pariter est addenda, ex XA − iterum excedat. Nam si ponatur 
nn bcbxX 2222 −− +=  et idcirco )( 2222 nn xabXA −− −=− . Sed quia X denotat aream 

CπvD, evanescere debet facto x = 0, quamobrem, si est n22 −  numerus positivus, semper 
debet esse 022 =− nbc ; at si n22 −  evadet numerus negativus, quantitas 

nbc 22− designabit quantitatem infinitam negativam. Quicquid igitur sit, nbc 22− debet esse 
nb 220 − ; hoc enim, si n22 −  seu n−1  est numerus affirmativus  

[p. 147], sponte evanescit, et si n−1  est negativum, praebet infinitum requisitum. Sed 
cum sit propositum legem vis centripetae invenire, nihil refert, sive haec quantitas 
constans sit = 0 sive infinita. Namque posita vi centripeta in π = p = πv, erit area 
CπvD= ∫ pdx . Quamobrem habibitur ∫=+ −− pdxbcbx nn 2222 , et sumtis differentialibus 

prodibit nbxnp 21)22( −−= . Consequenter vis centripeta debet esse in ( n21− )-plicata 
ratione distantiarum. Q.E.I.  
 

Corollarium 1.  
355. Quo igitur omnes descensus ad centrum C sint isochroni seu absolvantur aequalibus 
temporibus, poni debet n = 0, quo facto provenit vis centripeta distantiis directe 
proportionalis. Iam quidem animadvertimus hoc casu omnes descensus ad centrum esse 
isochronos (283). 
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Corollarium 2.  

356. Si ponatur n = 1, ut tempora descensuum sint spatiis percursis proportionalia, 
invenitur vis centripeta distantiis reciproce proportionalis. [Correxit P. St.] 
 

 
Corollarium 3.  

357. Si 2
1=n seu tempora in ratione subduplicata distantiarum, vis centripeta habetur 

constans, quam proprietatem iam supra eruimus (218). Si ergo 2
1>n , vis centripeta 

crescente distantia descrescet, sin 2
1<n , crescet crescente distantia. [p. 148] 

 
Scholion.  

358. Hae quidem proprietates omnes consequuntur ex propositione 39 (308), ubi 
demonstravimus, si vis centrepeta fuerit ut potestas exponentis n distantiarum, tempora 
descensuum fore in ratio 2

1 n− -plicata distantiarum. Quae propositio egregie cum hac 

nostra conspirat; posito enim n loco 2
1 n−  prodibit 1 – 2n loco n. Neque tamen me hac 

propositione acta egisse putandum est, nam hic a priori modo analytico ex data temporum 
conditione legem vis centripetae erui, cum ibi inverso ordine ad idem fuerim perductus. 
Neque praeterea ante certum erat praeter has inventas virium centripetarum leges alias 
non satisfacere. Ipsa vero solutio incredibilem in posterum praestat utilitatem. Nam quia 
mere est analytica et peculiarem a nemine adhuc adhibitam methodum complectitur, ad 
plurima alia problemata solvenda deducere potest, quae aliis methodis frustra tentantur. 
Ita cum huiusmodi methodus adhuc incognita esset, neque isochroni descensus neque 
curva tautochrona a priori sunt inventa, sed examinantes vel vim centripetam distantiis 
proportionalem vel curvam cycloidem inopinato in istas proprietates inciderunt 
Geometrae.  
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PROPOSITIO 47.  

 
PROBLEMA.  

 
359. Data scala potentiarum BND (Fig. 36) , quibus corpus per spatium AC descendens 
sollicitatur, invenire innumerabiles alias ut βνδ , quibus corpus sollicitatum in C eadem 
acquirit celeritatem, posito corpore semper in A motum ex quiete inchoante. [p. 149] 
  

SOLUTIO.  
  Cum pro scala potentiarum BND altitudo debita 
celeritati, quam corpus in C habebit, aequalis sit areae 

CE
ABCD  (321), exponente CE vim gravitatis, et pro scala 

βνδ ista altitudo = CE
CAβδ (cit.), debebit esse ABDC = 

CAβδ , quam propietatem utique infinitae curvae habere 
possunt. In quocunque quidem spatii AC puncto P haec 
proprietas locum habere nequit, ut esset PAABNP βν= , 
nisi curva βνδ incidat in alteram BND. Erit ergo 
discrimen quoddam inter has areas, quod vocemus Z, ita 

ut sit ZABNPPA −=βν , quae differentia Z ita debet esse comparata, ut evanescat 
puncto P tam in A incidente quam in C. Hanc ob rem constructa super axe AC curva 
quacunque AMC, quae in punctis A et C cum axe occurrat, poterit eius applicata PM loco 
huius Z usurpari; evanescit enim puncto P et in A et in C translato. Quo autem ex eadem 
curva AMC innumerabiles curvae βνδ deduce queant, expedit functionem quandam 
ipsius applicatae PM loco Z adhibere quam ipsam. Haec vero functio hanc habere debebit 
proprietatem, ut fiat = 0, si evanescit PM. His iam ita institutis ponatur 

,et  ,,, zPMYPyPNxAPaAC ===== ν  quarum quantitatum a, x, y, et z nec 
non Z, functio ipsius z, tanquam datae considerari possunt, incognita vero quantitas erit Y, 
[p. 150] quae ex hac aequatione ZydxYdx −=∫ ∫  definietur. Sumtis enim differentialibus 

prodit  

dx
dZyY −=  , 

ex qua aequatione curva βνδ construi poterit. Q.E.I.  
 

Corollarium 1.  
360. Sit 2nzZ = , erit nzdzdZ 2= et dx

nzdzyY 2−= . At dx
nzdz2 denotat subnormalem in 

curva AMC, ducta normali MR in puncto M. Si itaque accipiatur νN , quae linea est = 
,Yy −  aequalis cuicunque multiplo subnormalis PR, curva βνδ quaesito satisfaciet.  
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Corollarium 2.  

361. Possumus etiam ponere pzdzdZ = , denotante p functionem quamcunque ipsius z. 
Hic enim non opus habemus ad hoc respicere, quod Z evanescere debeat posito z = 0. 
Nam quaecunque functio loco p acciriatur, integrale ipsius pdzdz semper ita potest accipi, 
ut fiat = 0 posito z = 0. Hanc ob rem habebimus  

,.seu  . PRpNPRpyyY dx
pzdz =−=−= ν  quae constructio latissime patet. 

 
Scholion.  

362. Notandum hic est non necesse esse, ut loco curvarum BND et AMC curvae 
regulares, quae aequationibus certis contineantur, adhibeantur. Sed ad construendas 
curvas βνδ sufficit curvas etiam vel maxime irregulares nulla aequatione contentas 
accipere. Pariter enim constructio determinandis subnormalibus succedit. [p. 151] 
 

PROPOSITIO 48.  
 

PROBLEMA.  
 

363. Data scala potentiarum BND (Fig. 36) , quibus corpus spatium AC percurrens 
sollicitatur, invenire innumerabiles alias ut βνδ , quibus efficiatur, ut corpus eodem 
tempore spatium AC absolvat.  
  

SOLUTIO.  
  Sumto quocunque spatio AP sit tempus, quo hoc absolvitur urgente scala potentiarum 
BND, = t et tempus, quo idem spatium agente scala βνδ absolvitur, sit = T, ponatur 

ZtT += , quae quantitas Z evanescat puncto P tam in A quam in C translato. Hanc ob 
rem ut ante facio Z functionem applicatae PM curvae AMC in A et C cum axe AC 
occurrentis, talem, ut evanescat facto 0== zPM . Dicantur nunc AP x, PN y et Pv Y, et 
erit ∫ ∫

=
ydx

dxt  atque ∫ ∫
=

Ydx
dxT , quocirca hanc habebimus aequationem 

,Z
ydx

dx
Ydx
dx += ∫∫ ∫∫

ex qua Y determinari poterit. Nam differentiando habebitur 

,dZ
ydx

dx
Ydx
dx +=

∫∫
 ex qua prodit . atque  2

2

)( ∫+
∫

∫+
∫ == ∫∫ ydxdZdx

ydxdx
ydxdZdx

ydxdx YdxYdx  

Quia vero ista quantitas ob datas x, y et Z construi potest, ponatur ea = P, eritque  
Ydx = dP; consequenter invenitur dx

dPY = . Q.E.I. [p. 152] 

 
 

Corollarium 1.  
364. Sit pzdzdZ = ut ante denotante p functionem quamcunque ipsius z, erit  =dx

zdz . 

subnormali PR, quam ponamus = r. Quo facto habebitur 2)1( ∫+
∫=

ydxrp
ydxP  atque .dx

dPY =  
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Corollarium 2.  
365. Sit curva data BND linea parallela axi AC, ita ut potentia sit uniformis; semper enim 
potentia uniformis datur,  quae efficiat, ut corpus dato tempore spatium AC absolvat. 
Ponatur AB = PN = b ; erit .bxydx =∫  Unde habebitur ,2)1( bxrp

bxP
+

=  hacque 

differentiata obtinetur .dx
dPY =  

Scholium.  
366. Duas has posteriores propositiones inter se fere similes ideo innexi, quia peculiarem 
etiam solvendi modum requirunt, cuius utilitas in sequentibus reddetur conspicua. 
Ceterum vero ipsae propositiones non sunt inelegantes et huic capiti, in quo omnes casus 
motum rectilineum a potentiis productum respicientes exponere constituimus, necessario 
erant inserendae. Neque vero eas ad casus speciales accommodare idoneum visum est, ob 
nimis prolixum calculum, ad quem fuisset perveniendum. His igitur relictis pergimus ad 
motus rectilineos in medio resistente.  
 


