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CHAPTER V 

 
THE INVESTIGATION OF THE SUMS OF SERIES  

FROM THE GENERAL TERM 
 
103. Let the general term y=  of each series correspond to the index x, thus in order that y 
shall be some function of x. Again let Sy  be the sum or the summatory term of the series, 
expressing the aggregate of all the terms from the first or from some other fixed term as far 
as to y, inclusive. But we will compute the sum of series from the first term, from which , if 
there shall be 1x = , y will give the first term and Sy will show this first term  y; but if there 
may be put x = 0, the term Sy must change into nothing, because therefore no terms are 
present to be summed. On which account the summatory term Sy will be a function of x of 
this kind, which may vanish on putting 0x = . 
 
104. If the general term  y may depend on several parts, so that there shall be  

etcy p q r .= + + + , then the series itself will be able to be considered as put together from 
several other series, the general terms of which shall be  p, q, r etc. Hence if the individual 
sums of the series themselves should be known, likewise the sum of the proposed series 
will be able to be assigned; for it will be the aggregate from the sums of the individual 
series. On account of this if there shall be etcy p q r .= + + + , there will be 

etcSy Sp Sq Sr .= + + +  Therefore since above we have shown the sums of series, the 
general terms of which shall be some powers of x having positive integral exponents, hence 
the general summatory term will be able to be found of each series of which the general 
term is etc.ax bx cxα β γ+ + + , with etc., ,α β γ denoting positive whole numbers, or the 
general term of which is a rational integral function of x. 
 
105. There shall be in a series, the general term of which is equal to y=  or corresponding 
to the exponent x,  this preceding term v=  or corresponding to the exponent 1x − ; because  
v arises from y, if in place of  x there is written 1x − , there will be 
 

3 4 5

2 3 4 52 6 24 120
etcdy ddy d y d y d y

dx dx dx dx dx
v y .= − + − + − +  

 
Therefore if  y were the general term of this series   
 

1 2 3 4 1x x
a b c d v y

⋅ ⋅ ⋅ ⋅ ⋅ −
+ + + + ⋅⋅⋅ ⋅ ⋅ + +

 

 
and of this series the term corresponding to the index 0 were A= , v  will be, in as much as 
it is a function of x, the general term of this series 
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1 2 3 4 5 x
A a b c d v,

⋅ ⋅ ⋅ ⋅ ⋅
+ + + + ⋅⋅⋅ ⋅ ⋅ +

 

 
from which, if Sv may denote the sum of this series, there will be Sv Sy – y A= + . And 
thus on putting 0x = , because there becomes 0 and  Sy y A= = , Sv will vanish also.  
 
106. Therefore since there shall be 
 

3

2 32 6
etcdy ddy d y

dx dx dx
v y .= − + − +  

 
there will be, from shown before  
 

3 4

2 3 42 6 24
etcdy ddy d y d y

dx dx dx dx
Sv Sy S S S S .= − + − + −  

 
and on account of Sv Sy y A= − +  there will be 
 

3 4 4

2 3 42 6 24
etcdy ddy d y x d y

dx dx dx dx
y A S S S S .− = − + − +  

and there will be had 
 

3 4 4

2 3 42 6 24
etcdy ddy d y x d y

dx dx dx dx
S y A S S S .= − + − + −  

 
Therefore if the summatory terms of the series may be had, of which the general terms are 

3 4

2 3 4 etcddy d y d y
dx dx dx

, , ., from these the summatory term of the series will be obtained, of which 

the general term is dy
dx . Now the constant quantity A must be prepared thus, so that on 

making 0x =  the summatory term dy
dxS  may vanish, and it is determined more easily from 

this, as if we may say that it is the term corresponding to the index 0 in the series, of which 
the general term shall be y= . 
 
107. The sums of the powers of the natural numbers are accustomed to be investigated from 
this source. Indeed let there be 1ny x += ; because there becomes 
 

( ) ( ) ( ) ( )

( ) ( )( )

3

2 3

4 4

4

1 1 11 2
1 2 1 2 32 6

1 1 2 3
1 2 3 424

1

                     etc

n n n n ndy ddy d yn n n
dx dx dx

n n n nx d y n
dx

n x , x , x ,

x .,

+ + −− −
⋅ ⋅ ⋅

+ − − −
⋅ ⋅ ⋅

= + = =

=
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with these values substituted there will be 
 

( ) ( ) ( ) ( )1 1 11 1 2
1 2 1 2 31 etcn n n n nn n n nn Sx x A Sx Sx .+ + −+ − −
⋅ ⋅ ⋅+ = − + − + ; 

 
and if both sides may be divided by 1n + , there will be 
 

( ) ( )( )1 1 21 1 2 31
1 1 2 1 2 3 1 2 3 4 etc Const.n n n n nn n n n nn

nSx x Sx Sx Sx . ,− − −+ − − −
+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + − + − −  

 
which constant must be taken thus, so that on putting 0x =  the whole summatory term may 
vanish. Therefore with the aid of this formula now from known sums of lesser powers, the 
general terms of which are 1 2  etcn nx , x .− − , the sum will be able to be found of the higher 
powers expressed by the general term nx .  
 
108. If in this expression n may denote a positive whole number, the number of terms will 
be finite. And so hence the sum of boundless powers may be known completely; for there 
will be, if 0n = ,  

0Sx x.=  
 

And with that known it will be allowed to progress to higher powers; for on putting 1n =  
there becomes 
 

1 2 0 21 1 1 1
2 2 2 2Sx x Sx x x.= + = +  

 
if again there may be put n = 2, there will be produced 
 

2 3 0 3 21 1 1 1 1
3 3 3 2 6Sx x Sx Sx x x x,= + − = + +  

then following 
3 4 2 0 4 3 231 1 1 1 1

4 2 4 4 2 4

4 5 3 2 01 4 4 1
5 2 2 5

Sx x Sx Sx Sx x x x ,

Sx x Sx Sx Sx Sx

= + − + = + +

= + − + −

 

or 
4 5 4 31 1 1 1

5 2 3 30Sx x x x x.= + + −  
 
And thus again the sums of any higher powers may be deduced successively from the lower 
sums ; but this will be performed easier by the following ways. 
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109. Because above we have found to be  
 

3 4 5

2 3 4 5
1 1 1 1
2 6 24 120 etcdy ddy d y d y d y

dx dx dx dx dx
S y S S S S .,= + − + − +  

 
If we may put dy

dx z= , and 
3

2 3 2 etcddy d ydz ddz
dxdx dx dx

, .= =  Then truly on account of dy zdx= there 

will be the quantity y, the differential of which is zdx= , which we may indicate in this 
manner, so that there shall be y zdx= ∫ . But though this discovery of y itself depends on 

the calculation of the integral from a given z, yet now we will be able to use this form zdx∫  

here, if indeed for z we may not substitute other functions of x unless they are of this kind, 
so that that function, the differential of which zdx= , may be able to be shown from what 
has preceded. Therefore with these values substituted there will be  
 

3

2 3
1 1 1
2 6 24 etcdz ddz d z

dx dx dx
Sz zdx S S S .= + − + −∫  

 
with the addition of a constant of this kind, so that on putting 0x =  the sum Sz itself may 
vanish. 
 
110. Moreover on substituting the letter z in the above expression in place of  y  or, because 
it returns the same, on differentiating that equation there will be 
 

3 4

2 3 4
1 1 1
2 6 24 etc  ;dz ddz d z d z

dx dx dx dx
S z S S S .= + − + −  

 
but if in place of  y [in §109] there may be put dz

dx  there will be 
 

3 4 5

2 3 4 5
1 1 1
2 6 24 etc  ;ddz dz d z d z d z

dxdx dx dx dx
S S S S .= + − + −  

 
And in a similar manner if for y there may be put successively the values 

3

2 3   etcddz d z
dx dx

, ., 

there may be found 
 

3 4 5 6

3 2 4 5 6

4 3 5 6 7

4 3 5 6 7

1 1 1
2 6 24

1 1 1
2 6 24

etc

etc

d z ddz d z d z d z
dx dx dx dx dx
d z d z d z d z d z
dx dx dx dx dx

S S S S .,

S S S S .

= + − + −

= + − + −
 

 
and thus again indefinitely. 
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111. If now those values for 

3

2 3 etcdz ddz d z
dx dx dx

S , S , S . may be substituted successively in 

the expression 
3

2 3
1 1 1
2 6 24 etcdz ddz d z

dx dx dx
Sz zdx S S S .= + − + −∫  

 
an expression may be found for Sz, which will be in agreement with these terms 

3

2 3  etcdz ddz d z
dx dx dx

zdx, z, , , .∫ , the coefficients of which are found more easily in the following 

manner. 
There may be put 
 

3 4

2 3 4 etcdz ddz d z d z
dx dx dx dx

Sz zdx z .β γ δ εα= + + + + + +∫  

 
and for these terms, the values for these may be substituted, which are obtained from the 
preceding series, and from which there is  
 

3 4

2 3 4

3 4

2 3 4

3 4

2 3 4

2

1 1 1 1
2 6 24 120

2 6 24

2 6

etc

      etc

                      etc

                          

dz ddz d z d z
dx dx dx dx

dz ddz d z d z
dx dx dx dx

dz ddz d z d z
dx dx dx dx
ddz

dx

zdx Sz S S S S .

z S S S S .

S S S .

α α α

β β β

γ

α α

β

= − + − + −

= + − + − +

= − + −

=

∫

3 4

3 4

3 4

3 4

2         etc

                                                 etc

                                        etc

d z d z
dx dx

d z d z
dx dx

S S .

S .

.

γ

δ

γ

δ

− +

= −

 

 
Which values are required to be added since they ought to produce Sz, the coefficients 

   , , ,α β γ δ  etc. may be defined from the following equations 
 

1 1 1
2 2 6 2 6 24

1 1
2 6 24 120 2 6 24 120 720

1
2 6 24 120 720 5040

0 0 0

0 0

0   etc.

, , ,

, ,

βα α

γ β γ βα δ α

γ βε δ α

α β γ

δ ε

ζ

− = − + = − + − =

− + − + = − + − + − =

− + − + − + =

 

 
112. From these equations the values of all the letters   , , ,α β γ δ  etc. are able to be defined 
successively; moreover there is found 
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1 1 1 1
2 2 6 12 2 6 24

1 1 1
2 6 24 120 720 2 6 24 120 720

0

0  etc.

, , ,

, ,

βα α

γ β γ βα δ α

α β γ

δ ε

= = − = = − + =

= − + − = − = − + − + =
 

 
and thus on progressing further the alternate terms vanish continually [i.e.   , ,γ ε  etc. are 
zero]. Therefore the letters from the third, fifth, seventh etc. order and all the odd orders are 
equal to zero except the first, from which this value of the series itself may seem to strike 
against the law of continuity. On account of which therefore it is more necessary, so that it 
may be shown rigorously, that all the odd terms besides the first vanish by necessity. 
 
113. Because the individual letters are determined constant following the law, these will 
constitute recurring series between themselves. Towards explaining which, this series may 
be considered  
 

2 3 4 5 61 etcu u u u u u .,α β γ δ ε ζ+ + + + + + +  
 
the value of which  V= and it is evident this recurrent series arises  from the expansion of 
this fraction  

2 3 41 1 1 1
2 6 24 120

1
1 etcu u u u .

V
− + − + −

=  

 
And if this fraction is able to be resolved in another way into an infinite series following the 
progressing powers of u, it is necessary, that the same series   
 

2 3 4 51 etcV u u u u u .α β γ δ ε= + + + + + +  
 
may result always; and in this manner another law may be elicited, from which these same 
values    , , ,α β γ δ  etc. are determined. 
 
114. Because, if e may denote the number, the hyperbolic logarithm of which is equal to 
unity, there will be  
 

2 3 4 51 1 1 1
2 6 24 1201 + etc.ue u u u u u− = − + − + −  

there will be 
2 3 41 1 1 1 1

2 6 24 1201 + etc.
ue

u u u u u
−− = − + − −  

and thus 

1 u
u
e

V −−
= . 

 
Now the term  1

2u uα =  may be removed from the second series, so that there shall be  
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2 3 4 5 61

2 1 etcV u u u u u u .β γ δ ε ζ− = + + + + + +  ; 
there will be 

 
( )1

2 11
2 1

u

u

u e

e
V u

−

−

+

−
− =  

 
The numerator and denominator may be multiplied by 

1
2 ue  and there will be 

 
1 1
2 2

1 1
2 2

1
2

2

u u

u u

u e e

e e
V u

−

−

⎛ ⎞+⎜ ⎟
⎝ ⎠
⎛ ⎞−⎜ ⎟
⎝ ⎠

− =  

and with the quantities 
1 1
2 2  and  u ue e−  changed into series there becomes  

 

( )
2 4 6

2 4 2 4 6 8 2 4 6 81012
2 41

2 2 4 6 2 4 6 810

1 etc1
2 2 etc

u u u

u u

.

.
V u ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +

+ + +
− =  

or 
2 4 6 8

2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 2 4 6 810 4 6 14 4 6 18

1 etc1
2 1 etc

u u u u

u u u u

.

.
V u ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅

+ + + + +

+ + + + +
− =  

 
115. Therefore since in this fraction the odd powers shall be lacking completely, also in the 
expansion of this the odd powers entering are entirely nothing ; whereby since 1

2V u− may 
be equal to this series 

2 3 4 5 61 etcu u u u uβ γ δ ε ζ+ + + + + + .,  
 

all the coefficients of the odd powers   , , ,γ ε η ι  etc. may vanish. And thus the reason is 

clear, why in the series  2 3 41 etcu u u u .α β γ δ+ + + + +  all the terms besides the even terms 
and the second in order shall be 0=  nor yet may the law of continuity undergo a test of 
strength. Hence there shall be 
 

2 4 6 8 101 etcV u u u u uβ δ ζ θ χ= + + + + + +  
 
and with the letters     , , , ,β δ ζ θ χ  etc. determined by the expansion of the above fraction 
we will obtain the term of the summation of the series Sz, the general term of which is z=   
corresponding to the index x, expressed in this manner  
 

53 7

3 5 7
1
2 etcdz d zd z d z

dx dx dx dx
Sz zdx z .β ζδ θ= + + + + + +∫  
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116. Because the series 2 4 6 81 etc.u u u uβ δ ζ θ+ + + + +  arises from the expansion of this 
fraction  

2 4 6
2 4 2 4 6 8 2 4 6 81012
2 4 6

4 6 4 6 810 4 6 8101214

1 etc

1 etc

u u u

u u u

.

.
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +

+ + + +
 

 
the letters    , , ,β δ ζ θ  etc. will maintain this law, so that there shall be 
 

1 1
2 4 4 6

1 1
2 4 6 8 4 6 4 6 810

1 1
2 4 6 12 4 6 4 6 810 4 6 14

1 1
2 4 6 16 4 6 4 6 810 4 6 14 4 6 18

                              etc.

β

βδ

ζ βδ

β

δ

ζ

θ

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅

⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅

= −

= − −

= − − −

= − − − −

 

 
Moreover these values alternately are made to be positive and negative . 
 
117. Therefore if the alternates of these letters may be taken negatively, thus so that there 
shall be 

53 7

3 5 7
1
2 etcdz d zd z d z

dx dx dx dx
Sz zdx z .β ζδ θ= + − + − + −∫ , 

 
the letters    , , ,β δ ζ θ  etc. may be defined from this fraction 
 

2 4 6 8
2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 4 6 810 4 6 14 4 6 18

1 etc

1 etc

u u u u

u u u u

.

.
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

− + − + −

− + − + −  

 
that on expanding in the series  
  

2 4 6 81 etc.u u u uβ δ ζ θ+ + + + +  
 
on account of which there will be 
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1 1

4 6 2 4

1 1
4 6 4 6 810 2 4 6 8

1 1
4 6 4 6 810 4 6 14 2 4 6 12

                              etc. ;

β

βδ

β

δ

ζ

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

= −

= − +

= − + −
 

 
now all the terms become negative. 
 
118. Therefore we may put     A, B, Cα δ ζ= − = − = − etc., so that there shall be 
 

3 5 7

3 5 7
1
2 etcAdz Bd z Cd z Dd z

dx dx dx dx
Sz zdx z .= + + − + − +∫ , 

 
and according to the letters A, B, C, D etc. requiring to be defined this series may be 
considered  
 

2 4 6 8 101 etc.Au Bu Cu Du Eu− − − − − − , 
 
which arises from the expansion of this fraction  
 

2 4 6 8
2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 4 6 810 4 6 14 4 6 18

1 etc

1 etc

u u u u

u u u u

.

.
,⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

− + − + −

− + − + −
 

 
or that series may be considered  
 

3 5 7 91 etc.u Au Bu Cu Du Eu s,− − − − − − =  
 
which arises from the expansion of this fraction 
 

2 4 6
2 4 2 4 6 8 2 4 12

3 5 7
4 6 4 6 810 4 6 14

1 etc

etc

u u u

u u u

.

u .
s .⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅

− + − +

− + − +
=  

But since there shall be 
2 4 6

3 5 7

1
2 2 4 2 4 6 8 2 4 12

1
2 2 2 4 6 2 4 6 810 2 4 14

cos 1 etc

sin etc

u u u

u u u u

u .,

u .,
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

= − + − +

= − + − +
 

 
it follows to become 

1
2
1
2

cos 1 1
2 22sin cotu

us u.= =  
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Whereby if the cotangent of the arc 1

2 u  may be converted into a series, the terms of which 
may proceed following the powers of  u, from that the values of the letters A, B, C, D, E 
etc. may become known. 
 
119. Therefore since there shall be 1 1

2 2cots u= , there will be 1
2 cot 2u A s=  and by 

differentiation there will be 21
2 1 4

ds
ssdu −= + or   4 4 0ds du ssdu+ + =  or 

 
4 1 4 0ds
du ss .+ + = . 

But because there is 
3 51 etc.us Au Bu Cu ,= − − − −  

there will be 
2 4 64 4

2 4 64

2 2 4 6

4 3 4 5 4 7 4 etc.

   1              1

4   8    8           8 etc.

                        +  4  +  8   8  etc.

                                           

ds
du uu

uu

A Bu Cu Du

ss A Bu Cu Du

A u ABu ACu

= − − − ⋅ − ⋅ − ⋅ −

=

= − − − − −

− +
6             + 4   etc.    BBu +

 

 
With these homogeneous terms brought to zero there becomes  
 

2 2 2 21 2
12 5 7 9 11
2 2 2 2 2 2 2 2

13 15 17

    ,   ,  

,     

                                      etc

AC BB AD BCA AB

AE BD CC AF BE CD AG BF CE DD

A , B , C D E ,

F G , H ,

.

+ +

+ + + + + + +

= = = = =

= = =  

 
Now from which formulas clearly it is proven that these individual values are to be 
positive. 
 
120. Now because the denominators of these values become exceedingly great and they 
hardly impede the calculation, in place of the letters A, B, C, D etc. we may introduce these 
new values  
 

1 2 3 1 2 3 4 5 1 2 3 7

1 2 3 9 1 2 3 11

    

   etc

A , B , C ,

D , E .

β γα

δ ε
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

= = =

= =
 

 
And there may be found to become 
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2 23 8 71 2 4

2 3 3 3 4 5
5 10 9 8 12 1110 12 1110 9 812
3 1 2 5 1 2 3 1 2 5 1 2 7

14 1312 14 1312 111014
1 2 3 1 2 5 1 2

    2   2

=2 +2 ,  =2 +2  

               =2 +2 +2

, , , ,

,

α β α γ αβ δ αγ β

ε αδ βγ ζ αε βδ γγ

η αζ βε

⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅

= = = ⋅ = ⋅ +

⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ 7

                                          etc.

γδ⋅⋅

 

 
121. But more conveniently we may use from these formulas  
 

6 8 8 7 61 4
2 3 2 3 3 3 4 5 2

10 10 9 8 12 1110 12 1110 9 812
3 3 4 5 3 3 4 5 3 4 5 6 7 2

14 1312 14 1312 111014
3 3 4 5 3 4 5 6 7

      

= + ,  = +  

               = + +

=

, , , ,

,

,

ββαα

γγ

α β γ αβ δ αγ

ε αδ βγ ζ αε βδ

η αζ βε γδ

θ

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = ⋅ = ⋅ = ⋅ + ⋅

⋅ ⋅ ⋅ ⋅ + ⋅

⋅ ⋅ ⋅
16 161514 16 15 12 1615 10
3 3 4 5 3 4 7 3 4 9 2+ + +

                        etc.

δδαη βζ γε⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅ ⋅

 

 
 
Therefore from this law, as the following calculation is put in place without difficulty, if the 
values were found of the letters  ,  ,  ,α β γ δ  etc., then the summatory term of any series 
thus may be expressed, of which the general term, or agreeing with the index  x, were  = z, 
so that there shall be  
 
 

3 5

3 5

117 9

7 9 9

1
2 1 2 3 1 2 3 4 5 1 2 7

1 2 9 1 2 11 1 2 13
       + etc

d z d zdz
dx dx dx

d zd z d z
dx dx dx

Sz zdx z

.

β γα

ζδ ε

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅

= + + − +

− + −

∫  

 
 
But these letters  ,  ,  ,α β γ δ  etc. have been found to have the following values: 
 

1
2α =  or                        1 2 1α⋅ =  
1
6β =  1 2 3 1β⋅ ⋅ =  
1
6γ =  1 2 3 4 4γ⋅ ⋅ ⋅ =  

3
10δ =  1 2 3 5 36δ⋅ ⋅ ⋅ ⋅ ⋅ =  

5
6ε =  1 2 3 6 600ε⋅ ⋅ ⋅ ⋅ ⋅ =  

691
210  ζ =  1 2 3 7 24 691ζ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

35
2  η =  1 2 3 8 20160 35η⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  
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3617

30θ =  1 2 3 9 12096 3617θ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

43867
42ι =  1 2 3 10 86400 43867ι⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

1222277
110χ =  1 2 3 11 362880 1222277χ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

854513
6 λ =  1 2 3 12 79833600 854513λ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

1181820455
546=μ  1 2 3 13 11404800 1181820455μ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

76977927
2ν =  1 2 3 14 43589145600 76977927ν⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

23749461029
30ξ =  1 2 3 15 43589145600 23749461029ξ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

8615841276005
462π =  1 2 3 16 45287424000 8615841276005π⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

etc. 
 
122. These numbers have the greatest use in the general principles of series. For first from 
these numbers the final terms are able to be formed in the sums of even powers,  which 
uneven powers, we have noted above that the terms remaining are able to be found from the 
preceding sums [in the first part of § 63]. For in the equal powers the terms of the 
summation are x multiplied by certain numbers, which numbers for the powers  II, IV, VI, 
VIII etc. are 1 1 1 1

6 30 42 30  , , ,  etc. with alternate signs effected. But these numbers arise, if 
the values of the letters   ,  ,  ,α β γ δ   etc. found above may be divided respectively by the 
odd numbers 3, 5, 7, 9  etc., from which these numbers, which from their discoverer James  
Bernoulli are accustomed to be called Bernoulli Numbers , are 
 

1
3 6
α = = A  43867

19 798
ι = = J  

1
5 30
β = =B  174611 283 617

21 330 330
χ ⋅= = =K  

1
7 42
γ = = C  854513 11131 593

23 138 2 3 23
λ ⋅ ⋅

⋅ ⋅= = =L  
1

9 30
δ = =D  236364091

25 2730
μ = =M  

5
11 66
ε = =E  8553103 13 657931

27 6 6
ν ⋅= = =N

691
13 2730
ζ = = F 23749461029

29 870
ξ = =D  

7
15 6
η = =G  8615841276005

31 14322  π = =P  
3617

17 510
θ = = H etc. 

 
[These numbers arise in finding the sums of powers from certain properties of the binomial 
coefficients, introduced by James Bernoulli in his Ars Conjectandi. ] 
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123. These Bernoulli Numbers  , ,A B C  etc. therefore are able to be found at once from 
the following equations 
 

1
6

24 3 1
1 2 5

6 5 2
1 2 7

28 7 8 7 6 52 1
1 2 9 1 2 3 4 9

10 9 10 9 8 72 2
1 2 11 1 2 3 4 11

212 1110 9 12 1110 9 8 712 11 2 2 1
1 2 13 1 2 3 4 13 1 2 3 4 5 6 13

14 13
1

        

  

  

  

  

  

  

⋅
⋅
⋅
⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅

=

= ⋅

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅

= ⋅ + ⋅ + ⋅

=

A

B A

C AB

D AC B

E AD BC

F AE BD C

G 14 1312 11 14 1312 1110 92 2 2
2 15 1 2 3 4 15 1 2 3 4 5 6 15

                                    etc.,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ + ⋅ + ⋅AF BE CD

 

 
the law of which equations is by itself evident, if only it may be noted where the square of a 
certain letter occurs, the coefficient of which is twice as small, as must be considered 
following the rule. But actually the terms, which contain the products from different letters, 
are agreed to occur twice ; indeed there shall be for argument's sake  
 

12 1110 9 12 1110 9 8 712 11
1 2 1 2 3 4 1 2 3 4 5 6

12 1110 5 12 1110 3
1 2 3 8 1 2 3 10

13

            

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅
⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

= + +

+ +

F AE BD CC

DB EA.
 

 
124. Then truly also the same numbers   ,  ,  ,α β γ δ  etc. enter into the expressions 
of the sums of series of fractions contained in this general form 
 

1 1 1 1 1
2 3 4 5 6

1 etcn n n n n .,+ + + + + +  

 
as often as n is a positive even number. Indeed we have given these sums in the 
Introductione expressed by powers of the semi perimeter of the circleπ  with the radius 
present 1= ,  and in the coefficients of these powers themselves those numbers   ,  ,  ,α β γ δ  
etc. are taken to be present. But so that in case these arrangements do not come about, but 
by necessity it may be understood to have a place, we may investigate these same sums in a 
singular way, so that the law of the summation of these will be apparent. Because above we 
have found (§ 43) to be  
 

1 1 1 1 1 1
2 2 3cot + + etcm

n n m n m n m n m n m n m .,π π − + − + −= − + − −  
 
with the two terms joined together we will have  
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2 2 2 2 2 2 2
2 2 2 21

4 9 16
cot etcm m m m m

n n m nn m n m n m n m
.,π π

− − − −
= − − − − −  

 
from which we may deduce to be  
 

2 2 2 2 2 2 2 2
1 1 1 1 1

2 24 9 16
etc cot m

mm mn nn m n m n m n m
. .π π

− − − −
+ + + + = −  

 
Now we may put in place 1n =  and for m we may put  u, so that there shall be 
 

2 2 2 2
1 1 1 1 1

2 21 4 9 16
etc cotuu uu u u u

. u.π π
− − − −

+ + + + = −  

 
These individual fractions may be resolved in series 
 

2

2 4 6 8

2 2 4 6 8 10

2 4 6 8

2 2 4 6 8 10

2 4 6 8

2 2 4 6 8 10

2 4 6 81
1

1 1
4 2 2 2 2 2

1 1
9 3 3 3 3 3

1 1
16 4 4 4 4 4

1 etc

etc

etc

etc

                       etc

u
u u u u

u
u u u u

u
u u u u

u

u u u u .

.

.

.

.

−

−

−

−

= + + + + +

= + + + + +

= + + + + +

= + + + + +

 

 
125. But if therefore there is put in place 
 

2 2 2 8 8 8

4 4 4 10 10 10

6 6 6 12 12 12

1 1 1 1 1 1
2 3 4 2 3 4
1 1 1 1 1 1
2 3 4 2 3 4
1 1 1 1 1 1
2 3 4 2 3 4

1 etc 1 etc

1 etc 1 etc

1 etc 1 etc

                                 etc

. .

. .

. .

.,

+ + + + = + + + + =

+ + + + = + + + + =

+ + + + = + + + + =

a d

b e

c f
 

 
the above series will be changed into this 
 

2 4 6 8 10 1
2 2etc cotuu uu u u u u . u.π π+ + + + + + = −a b c d e f  

 
Therefore since in §118 the letters A, B, C, D etc. thus prepared may be found, so that by 
putting  
 

3 5 7 91 etc.us Au Bu Cu Du Eu= − − − − − −  
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there shall be 1 1

2 2cots u= , there will be on putting uπ  in place of 1
2 u  or 2 uπ  in place of  

u 
3 3 3 5 5 5 7 7 71 1

2 2cot 2 2 2 2 etc.uu A u B u C u D u ,ππ π π π π= − − − − −  
 
from which on multiplying by u

π there will be  
 

2 3 4 2 5 6 4 7 8 61
2 2cot 2 2 2 2 etc.u uuu A B u C u D u ,π π π π π π= − − − − −  

 
and hence it follows to become 
 

2 3 4 2 5 6 4 7 8 61
2 2 cot 2 2 2 2 etc.uu u u A B u C u D uπ π π π π π− = + + + +  

 
Therefore because in this way we have found to be  
 

2 4 61
2 2 cot etcuu u u u u u .,π π− = + + + +a b c d  

 
it is necessary that there  shall be  
 

3 3

5 5

77

9 9

11

2 2 22 2
1 2 3 1 2

23 4 4 42
1 2 3 4 5 1 2 3 4

25 6 6 62
1 2 3 7 1 2 3 6

7 8 8 822
1 2 3 9 1 2 3 8

9 10 10 102 2
1 2 3 11 1 2 3 10

211 12
1 2 3

2      

2

2

2

2

2

A

B

C

D

E

F

α

β

γ

δ

ε

ξ

π π π

π π π

π π π

π π π

π π π

π

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅

= = =

= = =

= = =

= = =

= = =

= =

A

B

C

D

E

a

b

c

d

e

f
11212 12

13 1 2 3 12

                         etc.

π π⋅⋅ ⋅ ⋅ ⋅⋅⋅= F

 

 
126. Therefore as from this easy reasoning not only all the powers of reciprocals, which we 
have shown in the preceding chapter, may be summed readily, but likewise also it is 
evident, how these sums may be formed from the known values of the letters     , , , ,α β γ δ ε  
etc. or also from the Bernoulli numbers     , , ,A B C D  etc. Whereby since we have defined 
fifteen of these numbers in §122, from these the sums of the reciprocals of all the even 
powers as far as to the sum of this series included will be possible to be assigned : 
 

30 30 30
1 1 1

2 3 4
1 etc.+ + + + ; 
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indeed the sum of this series will be  
 

29 292 230 30
1 2 3 31 1 2 3 30 .ξ π π⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅= = F  

 
And if with which it were wished to determine these sums further, that will be most easily 
put in place with the numbers  , ,α β γ  etc. continued, or from these    , , ,A B C  etc. 
 
127. Therefore the origin of these numbers   , , ,α β γ δ etc. or thence of the forms  

   , , ,A B C D  etc. chiefly is owed to the expansion of the cotangent of some angle in an 
infinite series. For since there shall be  
 

3 5 7 91 1 1
2 2cot etc.uu Au Bu Cu Du Eu ,= − − − − − −  

there will be 
 

2 4 6 8 9 1
2 2etc. 1 cot  ;uAu Bu Cu Du Eu u+ + + + + = −  

 
therefore if in place of the coefficients A, B, C, D etc. the values of these may be 
substituted, there may be found 
 

4 62 8 1
1 2 3 1 2 5 1 2 7 1 2 9 2 2etc. 1 cotu uu u u uβ γα δ
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = −  

 
and on using the Bernoulli numbers there will be  
 

4 6 82 1
1 2 1 2 3 4 1 2 6 1 2 8 2 2etc. 1 cotu u uu u u⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = −B C DA , 

 
from which series by differentiation innumerable other series are able to be deduced and 
thus an infinitude of series to be summed, in which these so noteworthy numbers enter. 
 
128. We may take the first equation, which we may multiply by u, so that there shall be 
 

5 73 9 1
1 2 3 1 2 5 1 2 7 1 2 9 2 2etc. cotu uu u uuu u,β γα δ
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = −  

 
which differentiated and divided by du gives 
 

( )
4 62 8

21
2

1
1 2 1 2 3 4 1 2 6 1 2 8 2 4 sin

etc. 1 cot ;u uu u uu
u

u uβ γα δ
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = − +  

 
and if it may be differentiated anew, there will be  
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( ) ( )
3 5 1

2
2 31 1

2 2

cos1
1 1 2 3 1 2 3 4 5 2 sin 4 sin

etc. cot .uu uu uu u
u u

uβ γα
⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ + + = − + −  

 
 But if the other equation may be differentiated, there will be 
 

( )
3 5 7

21
2

1 1
1 1 2 3 1 2 5 1 2 7 2 2 4 sin

etc. cotu u uu u
u

u .⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = − +B C DA  

 
Hence from these, if there may be put u π= , on account of 1

2cot 0π =  and 1
2sin 1π =  

these summations follow 
 

4 62 8

4 62 2 8

3 5 7

1 2 3 1 2 3 4 5 1 2 3 7 1 2 3 9

4 1 2 1 2 3 4 1 2 3 6 1 2 3 8

1 1 2 3 1 2 3 4 5 1 2 3 7

       1 etc.

1  etc.

          etc.

βπ γπαπ δπ

βπ γππ απ δπ

βπ γπαπ δππ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= + + + +

+ = + + + +

= + + + +

 

or 
      

2 4 6

1 2 3 1 2 3 4 5 1 2 3 71       etc.βπ γπ δπα ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + + +  
 
from which if the first may be taken away, there will remain 
 

( ) ( ) ( )2 4 6

1 2 3 1 2 3 4 5 1 2 3 7 etc.α β π β γ π γ δ πα − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + +  

 Then truly there will be 
 

4 6 82

3 5 7

1 2 1 2 3 4 1 2 3 6 1 2 3 8

4 1 1 2 3 1 2 3 4 5 1 2 3 7

 1 etc.

etc.

π π ππ

π π ππ π

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= + + + +

= + + + +

B C DA

B C DA
 

or 
2 4 61

4 1 1 2 3 1 2 3 4 5 1 2 3 7 etc.π π π
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + + +B C DA  

 
129. From the table of the values of the number   , , ,α β γ δ  etc., which we have shown 
above (§ 121), it appears that these decrease at first, and then truly again indeed to increase 
indefinitely. Therefore it will be worthwhile to investigate, according to what method  they 
may progress further, after they will have continued now for an exceedingly long time. 
Therefore let ϕ  be some number of this series of numbers   , , ,α β γ δ etc. removed at the 
greatest distance from the start, and let the following of the numbers be ψ . Because the 
sum of the reciprocals of the powers is defined by these numbers, let 2n be the exponent of 
the power, in the sum of which the number ϕ  enters;  2 2n +  will be the exponent of the 
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power for the corresponding number ψ  and the number n now will be exceedingly large. 
Hence from § 125 there will be had 
 

( )

( )

2 1

2 2 2

2 1

2 2 2 2 2 2

2 21 1 1
1 2 3 2 12 3 4

2 2 21 1 1
1 2 3 2 32 3 4

1 etc

1 etc

n

n n n

n

n n n

n
n

n
n

. ,

. .

ϕ

ψ

π

π

−

+

+ + +

⋅ ⋅ ⋅⋅⋅ +

+
⋅ ⋅ ⋅⋅⋅ +

+ + + + =

+ + + + =
 

 
But if therefore the latter may be divided by the former, there will be 
 

( )( )

1 1 22 2 2 22 3
1 1
2 22 3

1 etc 4
1 etc 2 2 2 3

n n

n n

.

. n n .ψπ
ϕ

+ ++ + +

+ + + + +
=  

 
Now because n is an exceedingly large number, on account of the series each nearly 1=  
and there will be  

( )( )
2

2 2 2 3
4

n n nn .ψ
ϕ πππ

+ += =  

 
Therefore since n designate, how often the number ϕ  shall be computed from the first α , 

here the number ϕ  will be itself had to its following ψ  as 2 2to  nπ , which ratio, if n were 
an infinite number, becomes in complete agreement to the truth. Because there is nearly 

10ππ = , if there may be put 100n = , the term will be around a thousand times smaller to 
the following. Therefore the numbers   , , ,α β γ δ  etc. and equally the Bernoulli numbers 

     , , ,A B C D  etc. equally constitute maximally divergent series, which also increase more 
than any series of geometric terms proceeding by increasing. 
 
130. Therefore from these values of the numbers found   , , ,α β γ δ  etc. or      , , ,A B C D  
etc., if a series may be proposed, the general term of which z were some function of x, the 
term of the summation Sz of this series may be expressed in the following manner, so that 
there shall be  
 

3

3

5 7 9 11

5 7 9 11

13 15 17

13 15 17

1 1 1
2 6 1 2 30 1 2 3 4

5 6911 1
42 30 66 27301 2 3 6 1 2 3 8 1 2 3 10 1 2 3 12

7 3617 43867
6 510 7981 2 3 14 1 2 3 16 1 2 3 18

+ 

+

dz d z
dx dx

d z d z d z d z
dx dx dx dx

d z d z d z
dx dx dx

Sz zdx z ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

= + + ⋅ − ⋅

+ ⋅ − ⋅ + ⋅ − ⋅

⋅ − ⋅ ⋅

−

∫

19 21

19 21

23 25

23 25

27 29

27 29

174611 854513
330 1381 2 3 20 1 2 3 22

236364091 8553103
2730 61 2 3 24 1 2 3 26

23749461029 8615841276005
870 143221 2 3 28 1 2 3 30

+

+

+ etc

d z d z
dx dx
d z d z

dx dx
d z d z

dx dx
.

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅

− ⋅ ⋅

− ⋅ ⋅ −
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Therefore if the integral zdx∫  were known or that quantity, the differential of which shall 

be = zdx, the summatory term may be found with the aid of differentiation. But it is to be 
noted always that it is required to add a constant of this kind, so that the sum made 0= , if 
the index x may be put to change into nothing. 
 
131. Therefore if z were a rational integral function of x, because the differentials of this 
finally vanish, the summatory term may be expressed by a finite expression; that which we 
will shown in the following examples. 
 

EXAMPLE 1 
The summatory term of this series is sought. 

 

( )2
1    2    3     4      5                     

1 9 25 49 81    2 1

x

x .+ + + + + ⋅⋅ ⋅ ⋅ + −
 

 
 Because here there shall be ( )22 1 4 4 1z x xx x= − = − + , there will be 
 

3 24
3 2zdx x x x= − +∫ ; 

 
for from the differentiation of this there arises 4 4xxdx xdx dx zdx− + = . Then indeed by 
differentiation there will be  
 

3

2 38  4   8   0  etc.dz ddz d z
dx dx dx

x , ,= − = =  

 
Hence the summatory term sought will be  
 

3 24 1 2 1
3 2 3 32 2 2 Constx x x xx x x .− + + − + + − ± , 

 
where the terms 1 1

2 3−  must be taken from the constant; from which there will be 
 

( ) ( )( )2 34 1
3 3 32 1 2 1 2 1xS x x x x x .− = − = − +  

 
Thus there will be on putting 4x =  , the sum of the first four terms 
 

4
31 9 25 49 7 9 84+ + + = ⋅ ⋅ = . 
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EXEMPLUM 2 

The summatory term of this series is sought. 
 

( )3
1    2       3       4                   

1 27 125 343 2 1

x

x .+ + + + ⋅⋅⋅ ⋅ + −
 

 
Because there is ( )3 3 22 1 8 12 6 1z x x x x= − = − + − , there will be 
 

3

2 3

4 3 2

2

 2 4 3

24 24 6, 48 24,  48 ;dz ddz d z
dx dx dx

zdx x x x x,

x x x

= − + −

= − + = − =

∫  

 
the following vanish. Whereby there shall be 
 

( )3 4 3 2

3 2 1
2

2 1
2
1

15

2 1 2 4 3

                           4 6 3

                                    2 2

                                                     Const

S x x x x x

x x x

x x

.,

− = − + −

+ − + −

+ − +

− ±

 

that is 
( ) ( )3 4 2 22 1 2 2 1S x x x x xx .− = − = −  

 
Thus there will be on putting 4x =  
 

1 27 125 343 16 31 496+ + + = ⋅ = . 
 
132. From this general expression for the summatory term that summatory term follows 
unaided, which in the above part we have dedicated to the sums of powers of natural 
numbers and which there it was not possible to report. For if indeed we may put nz x= , 
certainly there will be 1l

1
n

nzdx x +
+=∫  ; now the differentials thus will be had themselves  

 
( ) ( )( )

( )( )( )( ) ( ) ( )

3

2 3

5 7

5 7

1 2 3

5 7

,  1 ,   1 2

1 2 3 4     1 6   etc

n n ndz ddz d z
dx dx dx

n nd z d z
dx dx

nx n x n n x ,

n n n n x , n n n x .

− − −

− −

= = − = − −

= − − − − = − ⋅⋅⋅ −
 

 
Therefore from these the following summatory term may be deduced corresponding to the 
general term nx , clearly 
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( )( )

( )( )( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
13

1 21 1 31 1 1 1
1 2 6 2 30 2 3 4
1 2 3 4 1 6 1 85 7 951 1

42 2 3 4 5 6 30 2 3 8 66 1 2 3 10
1 10 1 1211 13691 7

2730 1 2 3 12 6 1 2 3 14
+

n n nn n n n nn
n

n n n n n n n n n n nn n n

n n n n n nn n
dx

Sx x x x x

x x x

x x

− −+ − −
+ ⋅ ⋅
− − − − − ⋅⋅⋅ − − ⋅⋅⋅ −− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅
− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

= + + ⋅ − ⋅

+ ⋅ − ⋅ + ⋅

− ⋅ ⋅

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 14 1 1615 173617 43867
510 1 2 3 16 798 1 2 3 18

1 18 1 2019 21174611 854513
330 1 2 3 20 138 1 2 3 22

1 22 123236364091 8553103
2730 1 2 3 24 6

 

+

+

+

n n n n n nn n

n n n n n nn n

n n n n n nn

x x

x x

x

− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅
− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

− ⋅⋅⋅ − − ⋅⋅⋅−
⋅ ⋅ ⋅⋅

− ⋅ ⋅

− ⋅ ⋅

− ⋅ ⋅ ( )

( ) ( ) ( ) ( )

24 25
1 2 3 26

1 26 1 2827 2923749461029 8615841276005
870 1 2 3 28 14322 1 2 3 30+ etc

n

n n n n n nn n

x

x x .

− −
⋅ ⋅ ⋅⋅

− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅− ⋅ ⋅ −

 

 
which expression does not differ from that, which we have given above,  only here we have 
introduced the Bernoulli numbers  , ,A B C etc., since above we have used the numbers 

   , , ,α β γ δ , etc.; yet meanwhile it elicits agreement at once. Here therefore the summatory 
term of all powers as far as to the thirtieth term inclusive will be allowed to be shown; 
which investigation, if another way were undertaken, would not be possible to be resolved 
without the longest and most tedious calculations. 
 
133. Now above (§ 59) we have given an almost similar expression for the summatory term 
from the general term being defined. Indeed equally from that the following differentials of 
the general term will proceed; but it will be different from that chiefly in that, because that 
integral zdx∫  will not be required, now the individual differentials of the general term will 

have multiples of these functions of  x. Therefore we may elicit anew the same expression 
in the following manner more convenient for the nature of the series, from which likewise 
the law will be shown more clearly, following which the coefficients of the differential for 
that are proceeding. Therefore let the general term of the series be z, some function of the 
index x; now the summatory term sought shall be s; which because, as we have seen, it will 
be a function of this kind of x, so that it may vanish on putting 0x = , there will be by that, 
which we have shown above concerning the nature of functions of this kind, 
 

2 3 3 4 4

2 3 41 1 2 1 2 3 1 2 3 4
etc 0xds x dds x d s x d s

dx dx dx dx
s . .

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− + − + − =  

 
134. Because s specifies the sum of all the terms of the series from the first as far as to the 
final z, it is evident, if in s in place of  x there may be put 1x − , then the first sum to the 
final term z pays a price; evidently there will be [for the negative unit step] 
 

3 4

2 3 42 6 24
etcds dds d s d s

dx dx dx dx
s z s .− = − + − + −  
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and thus 

3 4

2 3 42 6 24
etcds dds d s d s

dx dx dx dx
z .,= − + − +  

 
which equation supplies the manner of defining the general term from the given 
summatorial term s, which is indeed the most easy by itself. But with a suitable 
combination of this equation with that, which we have found in the previous paragraph, the 
value of  s will be able to be determined through x and z. To this end we may put in place to 
be  
 

3 4

2 3 4 + etc 0Bdz Cddz Dd z Ed z
dx dx dx dx

s Az . ,− + − + − =  

 
where A, B, C, D  etc. may signify necessary coefficients, either constants or variables; for 
since there shall be  

3 4 5

2 3 4 52 6 24 120
etcds dds d s d s d s

dx dx dx dx dx
z .,= − + − + −  

 
if hence the values for

3

2 3 etcdz ddz d z
dx dx dx

z, , , . may be substituted in the above equation, 

there will be produced 

3 4 5

2 3 4 5

3 4 5

2 3 4 5

3 4 5

2 3 4 5

3

2 6 24 120

2 6 24

2 6

          

   + etc

           + etc

                     + etc

 

Ads Adds Ad s Ad s Ad s
dx dx dx dx dx

Bdz Bdds Bd s Bd s Bd s
dx dx dx dx dx

Cddz Cd s Cd s Cd s
dx dx dx dx

Dd z
d

s s

Az .

.

.

=

− = − + − + −

+ = + − + −

− = − + −

+
4 5

3 4 5

4 5

4 5

2
                              + etc

                                          + etc

                                etc

Dd s Dd s
x dx dx

Ed z Ed s
dx dx

.

.

.,

= + −

− = −

 

 
which series therefore taken together will be equal to nothing. 
 
135. Therefore since before we have found to be  

 
 

2 3 3 4 4 5 5

2 3 4 52 6 24 120
0 + etcxds x dds x d s x d s x d s

dx dx dx dx dx
s .,= − + − + −  

 
if the above equation may be put in place equal to this equation, the following 
denominations of the letters A, B, C, D etc. will be produced 
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2 3

4 5

2 2 6 2 6

24 2 6 24 120 2 6 24 120 etc

x xA B A

x C x CB A D B A

A x, B , C ,

D , E , .

= = − = − −

= − − − = − − − −
 

 
Therefore from the values found of these letters A, B, C, D  etc. from the general term  z the 
summatory term s Sz=  thus will be determined, so that there shall be  
 

3 4 5

2 3 4 5 + etcBdz Cddz Dd z Ed z Fd z
dx dx dx dx dx

Sz Az .= − + − + −  

 
136. But since there becomes 

2 3 21 1 1 1 1
2 2 6 4 12

4 31 1 1
24 12 24 etc

A x, B x x, C x x x,

D x x xx, .,

= = − = − +

= − +
 

 
it is apparent these coefficients to be the same  as we have found above (§ 59); from which 
this expression of the summatory term is the same, as we have found there, and therefore 
there will be  

0 1 2 21 1 1 1
1 1 2 2

3 3 4 41 1 1 1
6 6 24 24

1

etc

A Sx S , B Sx x, C Sx x ,

D Sx x , E Sx x .

= = = − = −

= − = −
 

 
Hence therefore there will be 
 

3 4

2 3 4

2 3 3 4 4

2 3 4

2 3 4
2 6 24

2 6 24

etc

           + etc

dz ddz d z d z
dx dx dx dx
xdz x ddz x d z x d z
dx dx dx dx

Sz xz Sx Sx Sx Sx .

.

= − + − + −

+ − + −
 

 
But if in the general term z there is put 0x = , there will be produced the term with the 
corresponding index 0= ; which if it is put a= , there will be  
 

2 3 3

2 32 6
+ etcxdz x ddz x d z

dx dx dx
a z .= − + −  

and thus 
2 3 3 4 4

2 3 42 6 24
+ etcxdz x ddz x d z x d z

dx dx dx dx
. z a,− + − = −  

 
with which value substituted there will be had  
 

( ) 3 4

2 3 4
2 3 4

2 6 24
1 etcdz ddz d z d z

dx dx dx dx
Sz x z a Sx Sx Sx Sx .= + − − + − + −  
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Therefore with the sum of the powers known for this for whatever general term agreeing 
with that the summatory term will be able to be shown. 
 
137.  Therefore because we have found a twin expression of the summatory term Sz for the 
general term z and the other of these may contain the integral formula zdx∫ , if these two  

expressions may be put equal to each other, the value of zdx∫  itself will be obtained 

expressed by a series. For since there shall be 
 

( )

3 5

3 5

3

2 3

1
2 1 2 1 2 3 4 1 2 6

2 3
1 1 2 1 2 3

etc

1 etc.

d z d zdz
dx dx dx

dz ddz d z
dx dx dx

zdx z .

x z a Sx Sx Sx ,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅

+ + − + −

= + − − + − +

∫ B CA

 

 
there will be 
 

( ) ( ) ( )
( ) ( )

3

2 3

4 5 6 7

4 5 6 7

2 31 1
2 2 42 6

4 5 6 71 1
6 824 120 720 5040

etc

etc.

dz ddz d z
dx dx dx

d z d z d z d z
dx dx dx dx

zdx x z a Sx Sx Sx

Sx Sx Sx Sx .,

,

= + − − + + − −

+ − + + − − +

+

∫ BA

C D  

 
where    , , ,A B C D  etc. signify the Bernoulli numbers shown above (§ 122). 
For argument's sake let there be z xx= ; there becomes 22

0  2   and  1dz ddz
dx dx

a , x= = = ; 

hence  there will be   
 

( ) ( ) ( ) ( )3 21 1 1 1 1 1 1 1 1 1
2 2 2 12 2 2 12 3 2 62 2 1xxdx x xx x xx x x xx x x x x= + − + + + + + + + +∫  

 
or 31

3xxdx x=∫ ; but 31
3 x certainly gives the differential xxdx. 

 
138. Therefore a new way is apparent for finding the summatory term of a series of powers; 
because indeed from the coefficients assumed before  A, B, C, D etc. these summatory 
terms may be formed easily, but of which any coefficients may be constructed from the 
preceding: if in the formulas given in § 135 in place of the values of the letters the values 
reported in § 136 may be substituted, there will be 
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( )

( ) ( )

( ) ( ) ( )

1 1 1
2 2

2 2 31 1 2
3 3 2

3 3 4 2 23 3 21 1
4 4 2 2 3

4 4 5 3 3 24 3 4 3 21 1 4
5 5 2 2 3 2 3 4

                                      etc.

Sx x xx x

Sx x x x Sx x

Sx x x x Sx x Sx x

Sx x x x Sx x Sx x Sx x

⋅
⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

− = −

− = − − −

− = − − − − −

− = − − − − − − −

 

 
Hence therefore the sums of the higher powers will be able to be formed from the sums of 
the lower powers. 
 
139. But if truly the law, by which the coefficients A, B, C, D etc. above (§ 135) have been 
found to be progressing, we may examine more carefully, we may come upon the recurring 
series to be put in place. For if we may expand this fraction  
 

3 2 4 3 5 41 1 1 1
2 6 24 120

2 3 41 1 1 1
2 6 24 120

etc.
etc.

x xxu x u x u x u
x u u u u

+ + + + +
+ + + + +

 

 
we may assume the following powers of  u and this series to result  
 

2 3 4 etcA Bu Cu Du Eu .,+ + + + +  
 
there will be, as we have found before, 
 

1 1
2 2 etcA x, B xx A .= = −  

 
and thus the summatory terms of the series of powers will be found from this series. 
But that fraction, from the expansion of which that series arises, will change into this form  

1
1

xu

u
e
e

−
−

,  which, if  x were a positive whole number, will change into  

 
( )12 31 ;x uu u ue e e e −+ + + + ⋅⋅⋅ +  

 
since there shall be 



EULER'S  
INSTITUTIONUM CALCULI DIFFERENTIALIS  PART 2  

Chapter 5 
Translated and annotated by Ian Bruce. 

595 

( )

2 3 4

2 3 4

2 3 4

1 1 2 1 2 3 1 2 3 4
2 2 4 8 16

1 1 2 1 2 3 1 2 3 4
3 3 9 27 81

1 1 2 1 2 3 1 2 3 4

1

        1 1

      1                 etc

    1               etc.

    1               etc.

=1

u u u u u

u u u u u

u u u u u

xx u

e .

e

e

e

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−−

=

= + + + + +

= + + + + +

= + + + + +

+ ( ) ( ) ( ) ( )2 3 42 3 41 1 1 1
1 1 2 1 2 3 1 2 3 4 etc.u x u x u x u ,− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ + + +

 

 
and thus there will be 

( )
( )

( )

2 2 21 1 1
2 2 2

3 3 31 1 1
6 6 6

1

1

1

                     etc

A x
B S x Sx x

C S x Sx x

D S x Sx x

.

=

= − = −

= − = −

= − = −

 

 
From which the intertwining of these coefficients with the sums of the powers now 
observed before is completely confirmed and demonstrated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EULER'S  
INSTITUTIONUM CALCULI DIFFERENTIALIS  PART 2  

Chapter 5 
Translated and annotated by Ian Bruce. 

596 
 

CAPUT V 
 

INVESTIGATIO SUMMAE SERIERUM 
EX TERMINO GENERALI 

 
103. Sit seriei cuiusque terminus generalis y=  respondens indici x, ita ut y sit functio 
quaecunque ipsius x. Sit porro Sy  summa seu terminus summatorius seriei exprimens 
aggregatum omnium terminorum a primo seu alio termino fixo usque ad y inclusive. 
Computabimus autem summas serierum a termino primo, unde , si sit 1x = , dabit y 
terminum primum atque Sy hunc y terminum primum exhibebit; sin autem ponatur x = 0, 
terminus summatorius Sy in nihilum abire debet, propterea quod nulli termini summandi 
adsunt. Quocirca terminus summatorius Sy eiusmodi erit functio ipsius x, quae evanescat 
posito 0x = . 
 
104. Si terminus generalis y ex pluribus partibus constet, ut sit etcy p q r .= + + + , tum ipsa 
series considerari poterit tanquam conflata ex pluribus aliis seriebus, quarum termini 
generales sint p, q, r etc. Hinc si singularum istarum serierum summae fuerint cognitae, 
simul seriei propositae summa poterit assignari; erit enim aggregatum ex summis 
singularum serierum. Hanc ob rem si sit etcy p q r .= + + + , erit etcSy Sp Sq Sr .= + + +  
Cum igitur supra exhibuerimus summas serierum, quarum termini generales sint 
quaecunque potestates ipsius x habentes exponentes integros affirmativos, hinc euiusque 
seriei, cuius terminus generalis est etc.ax bx cxα β γ+ + +  denotantibus  etc, ,α β γ . 
numeros integros affirmativos seu cuius terminus generalis est functio rationalis integra 
ipsius x, terminus summatorius inveniri poterit. 
 
105. Sit in serie, cuius terminus generalis seu exponenti x respondens est y= , terminus 
hunc praecedens seu exponenti 1x − respondens v= ; quoniam v oritur ex y, si loco x 
scribatur 1x − , erit 

3 4 5

2 3 4 52 6 24 120
etcdy ddy d y d y d y

dx dx dx dx dx
v y .= − + − + − +  

 
Si igitur y fuerit terminus generalis huius seriei  
 

1 2 3 4 1x x
a b c d v y

⋅ ⋅ ⋅ ⋅ ⋅ −
+ + + + ⋅⋅⋅ ⋅ ⋅ + +

 

 
huiusque seriei terminus indici 0 respondens fuerit A= , erit v, quatenus est functio ipsius x, 
terminus generalis huius seriei 
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1 2 3 4 5 x
A a b c d v,

⋅ ⋅ ⋅ ⋅ ⋅
+ + + + ⋅⋅⋅ ⋅ ⋅ +

 

 
unde, si Sv denotet summam huius seriei, erit Sv Sy – y A= + . Sicque posito 0x = , quia 
fit 0 et  Sy y A= = , quoque Sv evanescet.  
 
106. Cum igitur sit 
 

3

2 32 6
etcdy ddy d y

dx dx dx
v y .= − + − +  

 
erit per ante ostensa 
 

3 4

2 3 42 6 24
etcdy ddy d y d y

dx dx dx dx
Sv Sy S S S S .= − + − + −  

 
atque ob Sv Sy y A= − +  erit 
 

3 4 4

2 3 42 6 24
etcdy ddy d y x d y

dx dx dx dx
y A S S S S .− = − + − +  

ideoque habebitur 
 

3 4 4

2 3 42 6 24
etcdy ddy d y x d y

dx dx dx dx
S y A S S S .= − + − + −  

 
Si ergo habeantur termini summatorii serierum, quarum termini generales sunt 

3 4

2 3 4 etcddy d y d y
dx dx dx

, , ., ex iis obtinebitur terminus summatonus seriei, cuius terminus generalis 

est dy
dx . Quantitas vero constans A ita debet esse comparata, ut facto 0x =  terminus 

summatorius dy
dxS  evanescat, hacque conditione facilius determinatur, quam si diceremus 

eam esse terminum indici 0 respondentem in serie, cuius terminus generalis sit y= . 
 
107. Ex hoc fonte summae potestatum numerorum naturalium investigari solent. Sit enim 

1ny x += ; quoniam fit 
 

( ) ( ) ( ) ( )

( ) ( )( )

3

2 3

4 4

4

1 1 11 2
1 2 1 2 32 6

1 1 2 3
1 2 3 424

1

                     etc

n n n n ndy ddy d yn n n
dx dx dx

n n n nx d y n
dx

n x , x , x ,

x .,

+ + −− −
⋅ ⋅ ⋅

+ − − −
⋅ ⋅ ⋅

= + = =

=
 

 
erit his valoribus substitutis 
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( ) ( ) ( ) ( )1 1 11 1 2
1 2 1 2 31 etcn n n n nn n n nn Sx x A Sx Sx .+ + −+ − −
⋅ ⋅ ⋅+ = − + − + ; 

 
atque si utrinque per 1n +  dividatur, erit 
 

( ) ( )( )1 1 21 1 2 31
1 1 2 1 2 3 1 2 3 4 etc Const.n n n n nn n n n nn

nSx x Sx Sx Sx . ,− − −+ − − −
+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅= + − + − −  

 
quae constans ita accipi debet, ut posito 0x =  totus terminus summatorius evanescat. Ope 
huius ergo formulae ex iam cognitis summis potestatum inferiorum, quarum termini 
generales sunt 1 2  etcn nx , x .− − , inveniri poterit summa potestatum superiorum termino 
generali nx expressarum.  
 
108. Si in hac expressione n denotet numerum integrum affirmativum, numerus terminorum 
erit finitus. Atque adeo hinc summa infinitarum potestatum absolute cognoscetur; erit enim, 
si 0n = ,  

0Sx x.=  
 

Hacque cognita ad superiores progredi licebit; posito enim 1n =  fiet 
 

1 2 0 21 1 1 1
2 2 2 2Sx x Sx x x.= + = +  

 
si porro ponatur n = 2, prodibit 
 

2 3 0 3 21 1 1 1 1
3 3 3 2 6Sx x Sx Sx x x x,= + − = + +  

deinde 
3 4 2 0 4 3 231 1 1 1 1

4 2 4 4 2 4

4 5 3 2 01 4 4 1
5 2 2 5

Sx x Sx Sx Sx x x x ,

Sx x Sx Sx Sx Sx

= + − + = + +

= + − + −

 

sive 
4 5 4 31 1 1 1

5 2 3 30Sx x x x x.= + + −  
 
Sicque porro quarumvis potestatum superiorum summae successivae ex inferioribus 
colligentur; hoc autem facilius per sequentes modos praestabitur. 
 
109. Quoniam supra invenimus esse 
 

3 4 5

2 3 4 5
1 1 1 1
2 6 24 120 etcdy ddy d y d y d y

dx dx dx dx dx
S y S S S S .,= + − + − +  
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Si ponamus dy
dx z= , et 

3

2 3 2 etcddy d ydz ddz
dxdx dx dx

, .= =  Tum vero ob  dy zdx= erit y quantitas, 

cuius differentiale est zdx= , quod hoc modo indicamus, ut sit y zdx= ∫ . Quanquam autem 

haec inventio ipsius y ex dato z a calculo integrali pendet, tamen hic iam ista forma zdx∫   

uti poterimus, si quidem pro z alias ipsius x functiones non substituamus nisi eiusmodi, ut 
functio illa, cuius differentiale est zdx= , ex praecedentibus exhiberi queat. His igitur 
valoribus substitutis erit 

3

2 3
1 1 1
2 6 24 etcdz ddz d z

dx dx dx
Sz zdx S S S .= + − + −∫  

 
adiiciendo eiusmodi constantem, ut posito 0x =  ipsa summa Sz evanescat. 
 
110. Substituendo autem loco y in superiori expressione litteram z vel, quod eodem redit, 
differentiando istam aequationem erit 
 

3 4

2 3 4
1 1 1
2 6 24 etc  ;dz ddz d z d z

dx dx dx dx
S z S S S .= + − + −  

 
sin autem loco y ponatur dz

dx  erit 
 

3 4 5

2 3 4 5
1 1 1
2 6 24 etc  ;ddz dz d z d z d z

dxdx dx dx dx
S S S S .= + − + −  

 
Similique modo si pro y successive ponantur valores 

3

2 3  etcddz d z
dx dx

, ., reperitur 

 
3 4 5 6

3 2 4 5 6

4 3 5 6 7

4 3 5 6 7

1 1 1
2 6 24

1 1 1
2 6 24

etc

etc

d z ddz d z d z d z
dx dx dx dx dx
d z d z d z d z d z
dx dx dx dx dx

S S S S .,

S S S S .

= + − + −

= + − + −
 

 
sicque porro in infinitum. 
 
111. Si nunc isti valores pro 

3

2 3 etcdz ddz d z
dx dx dx

S , S , S . successive substituantur 

in expressione 
3

2 3
1 1 1
2 6 24 etcdz ddz d z

dx dx dx
Sz zdx S S S .= + − + −∫  

 
invenietur expressio pro Sz, quae constabit ex his terminis 

3

2 3  etcdz ddz d z
dx dx dx

zdx, z, , , .∫ , 

quorum coefficientes facilius sequenti modo investigabuntur. 
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Ponatur 

3 4

2 3 4 etcdz ddz d z d z
dx dx dx dx

Sz zdx z .β γ δ εα= + + + + + +∫  

 
atque pro his terminis sui valores substituantur, quos obtinent ex praecedentibus 
seriebus, ex quibus est 
 

3 4

2 3 4

3 4

2 3 4

3 4

2 3 4

2

1 1 1 1
2 6 24 120

1
2 6 24

2 6

etc

      etc

                      etc

                          

dz ddz d z d z
dx dx dx dx

dz ddz d z d z
dx dx dx dx

dz ddz d z d z
dx dx dx dx
ddz

dx

zdx Sz S S S S .

z S S S S .

S S S .

α α

β β β

γ

α α

β

= − + − + −

= + − + − +

= − + −

=

∫

3 4

3 4

3 4

3 4

2         etc

                                                 etc

                                        etc

d z d z
dx dx

d z d z
dx dx

S S .

S .

.

γ

δ

γ

δ

− +

= −

 

 
Qui valores additi cum producere debeant Sz, coefficientes   , , ,α β γ δ  etc. ex 
sequentibus aequationibus definientur 
 

1 1 1
2 2 6 2 6 24

1 1
2 6 24 120 2 6 24 120 720

1
2 6 24 120 720 5040

0 0 0

0 0

0   etc.

, , ,

, ,

βα α

γ β γ βα δ α

γ βε δ α

α β γ

δ ε

ζ

− = − + = − + − =

− + − + = − + − + − =

− + − + − + =

 

 
112. Ex his ergo aequationibus successive valores omnium litterarum 

   , , ,α β γ δ etc. definiri poterunt; reperietur autem 
 

1 1 1 1
2 2 6 12 2 6 24

1 1 1
2 6 24 120 720 2 6 24 120 720

0

0  etc.

, , ,

, ,

βα α

γ β γ βα δ α

α β γ

δ ε

= = − = = − + =

= − + − = − = − + − + =
 

 
sicque ulterius progrediendo reperientur continuo termini alterni evanescentes. 
Litterae ergo ordine tertia, quinta, septima etc. omnesque impares erunt 0= excepta prima, 
quo ipso haec valorum series contra legem continuitatis impingere videtur. Quamobrem eo 
magis necesse est, ut rigide demonstretur omnes terminos impares praeter primum 
necessario evanescere. 
 
113. Quoniam singulae litterae secundum legem constantem ex praecedentibus 
determinantur, eae seriem recurrentem inter se constituent. Ad quam explicandam 
concipiatur ista series  
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2 3 4 5 61 etcu u u u u u .,α β γ δ ε ζ+ + + + + + +  

 
cuius valor sit V= atque manifestum est hanc seriem recurrentem oriri ex evolutione huius 
fractionis 

2 3 41 1 1 1
2 6 24 120

1
1 etcu u u u .

V
− + − + −

=  

 
Atque si ista fractio alio modo in seriem infinitam secundum potestates ipsius u 
progredientem resolvi queat, necesse est, ut semper eadem series  
 

2 3 4 51 etcV u u u u u .α β γ δ ε= + + + + + +  
 
resultet; hocque modo alia lex, qua isti iidem valores   , , ,α β γ δ  etc. determinantur, 
eruetur. 
 
114. Quoniam, si e denotet numerum, cuius logarithmus hyperbolicus unitati aequatur, erit 
 

2 3 4 51 1 1 1
2 6 24 1201 + etc.ue u u u u u− = − + − + −  

erit 
2 3 41 1 1 1 1

2 6 24 1201 + etc.
ue

u u u u u
−− = − + − −  

ideoque 

1 u
u
e

V −−
= . 

 
Nunc extinguatur ex serie secundus terminus 1

2u uα = , ut sit  
 

2 3 4 5 61
2 1 etcV u u u u u u .β γ δ ε ζ− = + + + + + +  ; 

erit 
 

( )1
2 11

2 1

u

u

u e

e
V u

−

−

+

−
− =  

 
Multiplicentur numerator ac denominator per 

1
2 ue  et eritque 

 
1 1
2 2

1 1
2 2

1
2

2

u u

u u

u e e

e e
V u

−

−

⎛ ⎞+⎜ ⎟
⎝ ⎠
⎛ ⎞−⎜ ⎟
⎝ ⎠

− =  

 
et quantitatibus 

1 1
2 2  et  u ue e−  in series conversis fiet 
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( )
2 4 6

2 4 2 4 6 8 2 4 6 81012
2 41

2 2 4 6 2 4 6 810

1 etc1
2 2 etc

u u u

u u

.

.
V u ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +

+ + +
− =  

sive 
2 4 6 8

2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 2 4 6 810 4 6 14 4 6 18

1 etc1
2 1 etc

u u u u

u u u u

.

.
V u ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅

+ + + + +

+ + + + +
− =  

 
115. Cum igitur in hac fractione potestates impares prorsus desint, in eius quoque 
evolutione potestates impares omnino nullae ingredientur; quare cum 1

2V u−  aequetur isti 
seriei 

2 3 4 5 61 etcu u u u uβ γ δ ε ζ+ + + + + + .,  
 

coefficientes imparium potestatum   , , ,γ ε η ι  etc. omnes evanescent. Sicque ratio 

manifesta est, cur in serie  2 3 41 etcu u u u .α β γ δ+ + + + +  termini ordine pares omnes 
praeter secundum sint 0=  neque tamen lex continuitatis vim patiatur. Erit ergo 
 

2 4 6 8 101 etcV u u u u uβ δ ζ θ χ= + + + + + +  
 
litterisque     , , , ,β δ ζ θ χ  etc. per evolutionem superioris fractionis determinatis 
obtinebimus terminum summatorium Sz seriei, cuius terminus generalis est z=   indici x 
respondens, hoc modo expressum 
 

53 7

3 5 7
1
2 etcdz d zd z d z

dx dx dx dx
Sz zdx z .β ζδ θ= + + + + + +∫  

 
 
116. Quia series 2 4 6 81 etc.u u u uβ δ ζ θ+ + + + +  oritur ex evolutione huius fractionis 
 

2 4 6
2 4 2 4 6 8 2 4 6 81012
2 4 6

4 6 4 6 810 4 6 8101214

1 etc

1 etc

u u u

u u u

.

.
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ + + +

+ + + +
 

 
litterae    , , ,β δ ζ θ etc. hanc legem tenebunt, ut sit 
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1 1

2 4 4 6

1 1
2 4 6 8 4 6 4 6 810

1 1
2 4 6 12 4 6 4 6 810 4 6 14

1 1
2 4 6 16 4 6 4 6 810 4 6 14 4 6 18

                              etc.

β

βδ

ζ βδ

β

δ

ζ

θ

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅

⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅

= −

= − −

= − − −

= − − − −

 

 
Hi autem valores alternative fiunt affirmativi et negativi. 
 
117. Si igitur harum litterarum alternae capiantur negative, ita ut sit 
 

53 7

3 5 7
1
2 etcdz d zd z d z

dx dx dx dx
Sz zdx z .β ζδ θ= + − + − + −∫ , 

 
litterae    , , ,β δ ζ θ  etc. definientur ex hac fractione 
 

2 4 6 8
2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 4 6 810 4 6 14 4 6 18

1 etc

1 etc

u u u u

u u u u

.

.
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

− + − + −

− + − + −  

 
eam evolvendo in seriem  

2 4 6 81 etc.u u u uβ δ ζ θ+ + + + +  
 
quocirca erit 

 
1 1

4 6 2 4

1 1
4 6 4 6 810 2 4 6 8

1 1
4 6 4 6 810 4 6 14 2 4 6 12

                              etc.

β

βδ

β

δ

ζ

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

= −

= − +

= − + −
 

 
nunc autem omnes termini fient negativi. 
 
118. Ponamus ergo     A, B, Cα δ ζ= − = − = − etc., ut sit 
 

3 5 7

3 5 7
1
2 etcAdz Bd z Cd z Dd z

dx dx dx dx
Sz zdx z .= + + − + − +∫ , 

 
atque ad litteras A, B, C, D etc. definiendas consideretur haec series  
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2 4 6 8 101 etc.Au Bu Cu Du Eu− − − − − − , 

 
quae oritur ex evolutione huius fractionis 
 

2 4 6 8
2 4 2 4 6 8 2 4 12 2 4 16
2 4 6 8

4 6 4 6 810 4 6 14 4 6 18

1 etc

1 etc

u u u u

u u u u

.

.
,⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅⋅⋅⋅⋅

− + − + −

− + − + −
 

 
vel consideretur ista series 
 

3 5 7 91 etc.u Au Bu Cu Du Eu s,− − − − − − =  
 
quae oritur ex evolutione huius fractionis 
 

2 4 6
2 4 2 4 6 8 2 4 12

3 5 7
4 6 4 6 810 4 6 14

1 etc

etc

u u u

u u u

.

u .
s .⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅

− + − +

− + − +
=  

Cum autem sit 
2 4 6

3 5 7

1
2 2 4 2 4 6 8 2 4 12

1
2 2 2 4 6 2 4 6 810 2 4 14

cos 1 etc

sin etc

u u u

u u u u

u .,

u .,
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅⋅⋅

= − + − +

= − + − +
 

 
sequitur fore 

1
2
1
2

cos 1 1
2 22sin cotu

us u.= =  

Quare si cotangens arcus 1
2 u  in seriem convertatur, cuius termini secundum potestates 

ipsius u procedant, ex ea cognoscentur valores litterarum A, B, C, D, E etc. 
 

119. Cum igitur sit 1 1
2 2cots u= , erit 1

2 cot 2u A s= et differentiando erit 21
2 1 4

ds
ssdu −= +  seu 

 4 4 0ds du ssdu+ + = sive  
 

4 1 4 0ds
du ss .+ + = . 

Quia autem est 
3 51 etc.us Au Bu Cu ,= − − − −  

erit 
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2 4 64 4

2 4 64

2 2 4 6

4 3 4 5 4 7 4 etc.

   1              1

4 8     8          8 etc.

                      +    4 +  8 8  etc.

                                               

ds
du uu

uu

A Bu Cu Du

ss A Bu Cu Du

A u ABu ACu

= − − − ⋅ − ⋅ − ⋅ −

=

= − − − − −

− +
6        4   etc.    BBu +

 

 
Perductis his terminis homogeneis ad cyphram fiet 
 

2 2 2 21 2
12 5 7 9 11
2 2 2 2 2 2 2 2

13 15 17

    ,   ,  

,     

                                      etc

AC BB AD BCA AB

AE BD CC AF BE CD AG BF CE DD

A , B , C D E ,

F G , H ,

.

+ +

+ + + + + + +

= = = = =

= = =  

 
Ex quibus formulis iam manifesto liquet singulos hos valores esse affirmativos. 
 
120. Quoniam vero denominatores horum valorum fiunt vehementer magni calculumque 
non mediocriter impediunt, loco litterarum A, B, C, D etc. has novas introducamus 
 

1 2 3 1 2 3 4 5 1 2 3 7

1 2 3 9 1 2 3 11

    

   etc

A , B , C ,

D , E .

β γα

δ ε
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

= = =

= =
 

Atque reperietur fore 
 

2 23 8 71 2 4
2 3 3 3 4 5

5 10 9 8 12 1110 12 1110 9 812
3 1 2 5 1 2 3 1 2 5 1 2 7

14 1312 14 1312 111014
1 2 3 1 2 5 1 2

    2   2

=2 +2 ,  =2 +2  

               =2 +2 +2

, , , ,

,

α β α γ αβ δ αγ β

ε αδ βγ ζ αε βδ γγ

η αζ βε

⋅
⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅

= = = ⋅ = ⋅ +

⋅ ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ 7

                                          etc.

γδ⋅⋅

 

 
121. Commodius autem utemur his formulis 
 

6 8 8 7 61 4
2 3 2 3 3 3 4 5 2

10 10 9 8 12 1110 12 1110 9 812
3 3 4 5 3 3 4 5 3 4 5 6 7 2

14 1312 14 1312 111014
3 3 4 5 3 4 5 6 7

      

= + ,  = +  

               = + +

=

, , , ,

,

,

ββαα

γγ

α β γ αβ δ αγ

ε αδ βγ ζ αε βδ

η αζ βε γδ

θ

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = ⋅ = ⋅ = ⋅ + ⋅

⋅ ⋅ ⋅ ⋅ + ⋅

⋅ ⋅ ⋅
16 161514 16 15 12 1615 10
3 3 4 5 3 4 7 3 4 9 2+ + +

                        etc.

δδαη βζ γε⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅⋅ ⋅ ⋅ ⋅
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Ex hac igitur lege, secundum quam calculus non difficulter instituitur, si inventi fuerint 
valores litterarum   ,  ,  ,α β γ δ  etc., tum seriei cuiuscunque, cuius terminus generalis seu 
indici x conveniens fuerit = z, terminus summatorius ita exprimetur, ut sit  
 
 

3 5

3 5

117 9

7 9 9

1
2 1 2 3 1 2 3 4 5 1 2 7

1 2 9 1 2 11 1 2 13
       + etc

d z d zdz
dx dx dx

d zd z d z
dx dx dx

Sz zdx z

.

β γα

ζδ ε

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅

= + + − +

− + −

∫  

 
 
Istae autem litterae   ,  ,  ,α β γ δ  etc. sequentes valores habere inventae sunt: 

1
2α =  sive                         1 2 1α⋅ =  
1
6β =  1 2 3 1β⋅ ⋅ =  
1
6γ =  1 2 3 4 4γ⋅ ⋅ ⋅ =  

3
10δ =  1 2 3 5 36δ⋅ ⋅ ⋅ ⋅ ⋅ =  

5
6ε =  1 2 3 6 600ε⋅ ⋅ ⋅ ⋅ ⋅ =  

691
210  ζ =  1 2 3 7 24 691ζ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

35
2  η =  1 2 3 8 20160 35η⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

3617
30θ =  1 2 3 9 12096 3617θ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

43867
42ι =  1 2 3 10 86400 43867ι⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

1222277
110χ =  1 2 3 11 362880 1222277χ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

854513
6 λ =  1 2 3 12 79833600 854513λ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

1181820455
546=μ  1 2 3 13 11404800 1181820455μ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

76977927
2ν =  1 2 3 14 43589145600 76977927ν⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

23749461029
30ξ =  1 2 3 15 43589145600 23749461029ξ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

8615841276005
462π =  1 2 3 16 45287424000 8615841276005π⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  

etc. 
 
122. Numeri isti per universam serierum doctrinam amplissimum habent usum. Primum 
enim ex his numeris formari possunt ultimi termini in summis potestatum parium, quos non 
aeque ac reliquos terminos ex summis praecedentium reperiri posse supra annotavimus. In 
potestatibus enim paribus postremi summarum termini sunt x per certos numeros 
multiplicati, qui numeri pro potestatibus II, IV, VI, VIII etc. sunt 1 1 1 1

6 30 42 30 , , ,  etc. 
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signis alternantibus affecti. Oriuntur autem hi numeri, si valores litterarum 

  ,  ,  ,α β γ δ   etc. supra inventi respective dividantur per numeros impares  3, 5, 7, 9  etc., 
unde isti numeri, qui ab inventore IACOBO BERNOULLIO vocari solent BERNOULLIANI, 
erunt 
 

1
3 6
α = = A  43867

19 798
ι = = J  

1
5 30
β = =B  174611 283 617

21 330 330
χ ⋅= = =K  

1
7 42
γ = = C  854513 11131 593

23 138 2 3 23
λ ⋅ ⋅

⋅ ⋅= = =L  
1

9 30
δ = =D  236364091

25 2730
μ = =M  

5
11 66
ε = =E  8553103 13 657931

27 6 6
ν ⋅= = =N

691
13 2730
ζ = = F 23749461029

29 870
ξ = =D  

7
15 6
η = =G  8615841276005

31 14322  π = =P  
3617

17 510
θ = = H etc. 

 
123. Isti igitur numeri BERNOULLIANI  , ,A B C  etc. immediate ex sequentibus 
aequationibus inveniri poterunt 
 

1
6

24 3 1
1 2 5

6 5 2
1 2 7

28 7 8 7 6 52 1
1 2 9 1 2 3 4 9

10 9 10 9 8 72 2
1 2 11 1 2 3 4 11

212 1110 9 12 1110 9 8 712 11 2 2 1
1 2 13 1 2 3 4 13 1 2 3 4 5 6 13

14 13
1

        

  

  

  

  

  

  

⋅
⋅
⋅
⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅

=

= ⋅

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅

= ⋅ + ⋅ + ⋅

=

A

B A

C AB

D AC B

E AD BC

F AE BD C

G 14 1312 11 14 1312 1110 92 2 2
2 15 1 2 3 4 15 1 2 3 4 5 6 15

                                    etc.,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ + ⋅ + ⋅AF BE CD

 

 
quarum aequationum lex per se est manifesta, si tantum notetur, ubi quadratum cuiuspiam 
litterae occurrit, eius coefficientem duplo esse minorem, quam secundum regulam esse 
debere videatur. Revera autem termini, qui continent producta ex disparibus litteris, bis 
occurrere censendi sunt; erit enim verbi gratia 
 

12 1110 9 12 1110 9 8 712 11
1 2 1 2 3 4 1 2 3 4 5 6

12 1110 5 12 1110 3
1 2 3 8 1 2 3 10

13

            

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅
⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

= + +

+ +

F AE BD CC

DB EA.
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124. Deinde vero etiam iidem numeri  ,  ,  ,α β γ δ  etc. ingrediuntur in expressiones 
summarum serierum fractionum in hac forma generali 
 

1 1 1 1 1
2 3 4 5 6

1 etcn n n n n .,+ + + + + +  

 
quoties n est numerus par affirmativus, contentarum. Has enim summas in Introductione 
per potestates semiperipheriae circuli π radio exisente 1=  expressas dedimus atque in 
harum potestatum coefficientibus isti ipsi numeri  ,  ,  ,α β γ δ  etc. ingredi deprehenduntur. 
Quo autem haec convenientia non casu evenire, sed necessario locum habere intelligatur, 
has easdem summas singulari modo investigemus, quo lex summarum illarum facilius 
patebit. Quoniam supra (§ 43) invenimus esse 
 

1 1 1 1 1 1
2 2 3cot + + etcm

n n m n m n m n m n m n m .,π π − + − + −= − + − −  
 
binis terminis coniungendis habebimus 
 

2 2 2 2 2 2 2
2 2 2 21

4 9 16
cot etcm m m m m

n n m nn m n m n m n m
.,π π

− − − −
= − − − − −  

 
unde colligimus fore 
 

2 2 2 2 2 2 2 2
1 1 1 1 1

2 24 9 16
etc cot m

mm mn nn m n m n m n m
. .π π

− − − −
+ + + + = −  

 
Statuamus nunc 1n =  et pro m ponamus u, ut sit 
 

2 2 2 2
1 1 1 1 1

2 21 4 9 16
etc cotuu uu u u u

. u.π π
− − − −

+ + + + = −  

 
Resolvantur singulae istae fractiones in series 
 

2

2 4 6 8

2 2 4 6 8 10

2 4 6 8

2 2 4 6 8 10

2 4 6 8

2 2 4 6 8 10

2 4 6 81
1

1 1
4 2 2 2 2 2

1 1
9 3 3 3 3 3

1 1
16 4 4 4 4 4

1 etc

etc

etc

etc

                       etc

u
u u u u

u
u u u u

u
u u u u

u

u u u u .

.

.

.

.

−

−

−

−

= + + + + +

= + + + + +

= + + + + +

= + + + + +

 

 
125. Quodsi ergo ponatur 
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2 2 2 8 8 8

4 4 4 10 10 10

6 6 6 12 12 12

1 1 1 1 1 1
2 3 4 2 3 4
1 1 1 1 1 1
2 3 4 2 3 4
1 1 1 1 1 1
2 3 4 2 3 4

1 etc 1 etc

1 etc 1 etc

1 etc 1 etc

                                 etc

. .

. .

. .

.,

+ + + + = + + + + =

+ + + + = + + + + =

+ + + + = + + + + =

a d

b e

c f
 

superior series transmutabitur in hanc 
 

2 4 6 8 10 1
2 2etc cotuu uu u u u u . u.π π+ + + + + + = −a b c d e f  

 
Cum igitur in § 118 litterae A, B, C, D etc. ita comparatae sint inventae, ut posito 
 

3 5 7 91 etc.us Au Bu Cu Du Eu= − − − − − −  
 
sit 1 1

2 2cots u= , erit posito uπ  loco 1
2 u  seu 2 uπ  loco u 

 
3 3 3 5 5 5 7 7 71 1

2 2cot 2 2 2 2 etc.uu A u B u C u D u ,ππ π π π π= − − − − −  
 
unde per u

π   multiplicando erit 
 

2 3 4 2 5 6 4 7 8 61
2 2cot 2 2 2 2 etc.u uuu A B u C u D u ,π π π π π π= − − − − −  

 
hincque sequitur fore 
 

2 3 4 2 5 6 4 7 8 61
2 2 cot 2 2 2 2 etc.uu u u A B u C u D uπ π π π π π− = + + + +  

 
Quia igitur modo invenimus esse 
 

2 4 61
2 2 cot etcuu u u u u u .,π π− = + + + +a b c d  

 
necesse est, ut sit 
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3 3

5 5

77

9 9

11

2 2 22 2
1 2 3 1 2

23 4 4 42
1 2 3 4 5 1 2 3 4

25 6 6 62
1 2 3 7 1 2 3 6

7 8 8 822
1 2 3 9 1 2 3 8

9 10 10 102 2
1 2 3 11 1 2 3 10

211 12
1 2 3

2      

2

2

2

2

2

A

B

C

D

E

F

α

β

γ

δ

ε

ξ

π π π

π π π

π π π

π π π

π π π

π

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅

= = =

= = =

= = =

= = =

= = =

= =

A

B

C

D

E

a

b

c

d

e

f
11212 12

13 1 2 3 12

                         etc.

π π⋅⋅ ⋅ ⋅ ⋅⋅⋅= F

 

 
126. Ex hoc ergo tam facili ratiocinio non solum omnes series potestatum reciprocarum, 
quas paragrapho praecedenti exhibuimus, expedite summantur, sed simul quoque 
perspicitur, quemadmodum istae summae ex cognitis valoribus litterarum     , , , ,α β γ δ ε  
etc. vel etiam ex numeris BERNOULLIANIS     , , ,A B C D  etc. formentur. Quare cum 
istorum numerorum quindecim §122 definiverimus, ex iis summae omnium potestatum 
parium usque ad sunimam huius seriei inclusive assignari poterunt: 
 

30 30 30
1 1 1

2 3 4
1 etc.+ + + + ; 

erit enim huius seriei summa 
 

29 292 230 30
1 2 3 31 1 2 3 30 .ξ π π⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅= = F  

 
Atque si quis voluerit has summas ulterius determinare, id continuandis numeris  , ,α β γ  
etc. vel his    , , ,A B C  etc. facillime praestabitur. 
 
127. Origo ergo horum numerorum   , , ,α β γ δ etc. vel inde formatorum    , , ,A B C D  
etc. potissimum debetur evolutioni cotangentis cuiusvis anguli in seriem infinitam. Cum 
enim sit 

3 5 7 91 1 1
2 2cot etc.uu Au Bu Cu Du Eu ,= − − − − − −  

erit 
 

2 4 6 8 9 1
2 2etc. 1 cot  ;uAu Bu Cu Du Eu u+ + + + + = −  

 
si igitur loco coefficientium A, B, C, D etc. valores ipsorum substituantur, reperietur 
 

4 62 8 1
1 2 3 1 2 5 1 2 7 1 2 9 2 2etc. 1 cotu uu u u uβ γα δ
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = −  
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atque numeros BERNOULLIANOS adhibendo erit 
 

4 6 82 1
1 2 1 2 3 4 1 2 6 1 2 8 2 2etc. 1 cotu u uu u u⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = −B C DA , 

 
ex quibus seriebus per differentiationem innumerabiles aliae deduci possunt sicque infinitae 
series summari, in quas isti numeri notatu tantopere digni ingrediuntur. 
 
128. Sumamus aequationem priorem, quam per u multiplicemus, ut sit 
 

5 73 9 1
1 2 3 1 2 5 1 2 7 1 2 9 2 2etc. cotu uu u uuu u,β γα δ
⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = − , 

 
quae differentiata ac per du divisa dat 
 

( )
4 62 8

21
2

1
1 2 1 2 3 4 1 2 6 1 2 8 2 4 sin

etc. 1 cot ;u uu u uu
u

u uβ γα δ
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = − +  

 
et si denuo differentietur, erit 
 

( ) ( )
3 5 1

2
2 31 1

2 2

cos1
1 1 2 3 1 2 3 4 5 2 sin 4 sin

etc. cot .uu uu uu u
u u

uβ γα
⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ + + = − + −  

 
 Sin autem altera aequatio differentietur, erit 
 

( )
3 5 7

21
2

1 1
1 1 2 3 1 2 5 1 2 7 2 2 4 sin

etc. cotu u uu u
u

u .⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅⋅⋅+ + + + = − +B C DA  

 
Ex his ergo, si ponatur u π= , ob 1

2cot 0π =  et 1
2sin 1π =  sequuntur istae summationes 

 
4 62 8

4 62 2 8

3 5 7

1 2 3 1 2 3 4 5 1 2 3 7 1 2 3 9

4 1 2 1 2 3 4 1 2 3 6 1 2 3 8

1 1 2 3 1 2 3 4 5 1 2 3 7

       1 etc.

1  etc.

          etc.

βπ γπαπ δπ

βπ γππ απ δπ

βπ γπαπ δππ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= + + + +

+ = + + + +

= + + + +

 

seu 

      
2 4 6

1 2 3 1 2 3 4 5 1 2 3 71       etc.βπ γπ δπα ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + + +  
 
a qua si prima subtrahatur, remanebit 
 

( ) ( ) ( )2 4 6

1 2 3 1 2 3 4 5 1 2 3 7 etc.α β π β γ π γ δ πα − − −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + +  
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 Tum vero erit 
 

4 6 82

3 5 7

1 2 1 2 3 4 1 2 3 6 1 2 3 8

4 1 1 2 3 1 2 3 4 5 1 2 3 7

 1 etc.

etc.

π π ππ

π π ππ π

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

= + + + +

= + + + +

B C DA

B C DA
 

seu 
2 4 61

4 1 1 2 3 1 2 3 4 5 1 2 3 7 etc.π π π
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅= + + + +B C DA  

 
129. Ex tabula valorum numerorum   , , ,α β γ δ  etc., quam supra (§ 121) exhibuimus, patet 
eos primum decrescere, tum vero iterum crescere et, quidem in infinitum. Operae igitur 
pretium erit investigare, in quanam ratione hi numeri, postquam iam vehementer longe 
fuerint continuati, ulterius progredi pergant. Sit igitur ϕ  numerus quicunque huius seriei 
numerorum    , , ,α β γ δ etc. longissime ab initio remotus et sit ψ  numerorum sequens. 
Quoniam per hos numeros summae potestatum reciprocarum definiuntur, sit 2n exponens 
potestatis, in cuius summam numerus ϕ  ingreditur; erit  2 2n +  exponens potestatis 
numero ψ  respondens atque numerus n iam erit vehementer magnus. Hinc ex § 125 
habebitur 
 

( )

( )

2 1

2 2 2

2 1

2 2 2 2 2 2

2 21 1 1
1 2 3 2 12 3 4

2 2 21 1 1
1 2 3 2 32 3 4

1 etc

1 etc

n

n n n

n

n n n

n
n

n
n

. ,

. .

ϕ

ψ

π

π

−

+

+ + +

⋅ ⋅ ⋅⋅⋅ +

+
⋅ ⋅ ⋅⋅⋅ +

+ + + + =

+ + + + =
 

 
Quodsi ergo haec per istam dividatur, erit 
 

( )( )

1 1 22 2 2 22 3
1 1
2 22 3

1 etc 4
1 etc 2 2 2 3

n n

n n

.

. n n .ψπ
ϕ

+ ++ + +

+ + + + +
=  

 
Quia vera n est numerus vehementer magnus, ob seriem utramque proxime 1=  erit 
 

( )( )
2

2 2 2 3
4

n n nn .ψ
ϕ πππ

+ += =  

 
Cum igitur n designet, quotus sit numerus ϕ  a primo α  computatus, se habebit hic 

numerus ϕ  ad suum sequentem ψ  ut 2 2ad  nπ , quae ratio, si n fuerit numerus infinitus, 
veritati penitus fit consentanea. Quoniam est fere 10ππ = , si ponatur 100n = , erit terminus 
centesimus circiter millies minor suo sequente. Constituunt ergo numeri    , , ,α β γ δ  etc. 
pariter ac BERNOULLIANI      , , ,A B C D  etc. seriem maxime divergentem, quae etiam 
magis increscat quam ulla series geometrica terminis crescentibus procedens. 
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130. Inventis ergo his valoribus numerorum   , , ,α β γ δ  etc. seu     , , ,A B C D  etc., si 
proponatur series, cuius terminus generalis z fuerit functio quaecunque ipsius x, terminus 
summatorius Sz huius seriei sequenti modo exprimetur, ut sit  
 

3

3

5 7 9 11

5 7 9 11

13 15 17

13 15 17

1 1 1
2 6 1 2 30 1 2 3 4

5 6911 1
42 30 66 27301 2 3 6 1 2 3 8 1 2 3 10 1 2 3 12

7 3617 43867
6 510 7981 2 3 14 1 2 3 16 1 2 3 18

+ 

+

dz d z
dx dx

d z d z d z d z
dx dx dx dx

d z d z d z
dx dx dx

Sz zdx z ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

= + + ⋅ − ⋅

+ ⋅ − ⋅ + ⋅ − ⋅

⋅ − ⋅ ⋅

−

∫

19 21

19 21

23 25

23 25

27 29

27 29

174611 854513
330 1381 2 3 20 1 2 3 22

236364091 8553103
2730 61 2 3 24 1 2 3 26

23749461029 8615841276005
870 143221 2 3 28 1 2 3 30

+

+

+ etc

d z d z
dx dx
d z d z

dx dx
d z d z

dx dx
.

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

⋅ ⋅

− ⋅ ⋅

− ⋅ ⋅ −

 

 
Si igitur innotuerit integrale zdx∫  seu quantitas illa, cuius differentiale sit = zdx, terminus 

summatorius ope continuae differentiationis invenietur. Perpetuo autem notandum est ad 
hanc expressionem semper eiusmodi constantem addi oportere, ut summa fiat 0= , si index 
x ponatur in nihilum abire. 
 
131. Si igitur z fuerit functio rationalis integra ipsius x, quia eius differentialia tandem 
evanescunt, terminus summatorius per expressionem finitam exprimetur; id quod 
sequentibus exemplis illustrabimus. 
 

EXEMPLUM 1 
Quaeratur terminus summatorius huius seriei 

 

( )2
1    2    3     4      5                     

1 9 25 49 81    2 1

x

x .+ + + + + ⋅⋅ ⋅ ⋅ + −
 

 
 Quia hic est ( )22 1 4 4 1z x xx x= − = − + , erit 
 

3 24
3 2zdx x x x= − +∫ ; 

 
ex huius enim differentiatione oritur 4 4xxdx xdx dx zdx− + = . Deinde vero per 
differentiationem erit 
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3

2 38  4   8   0  etc.dz ddz d z
dx dx dx

x , ,= − = =  

Hinc erit terminus summatorius quaesitus 
 

3 24 1 2 1
3 2 3 32 2 2 Constx x x xx x x .− + + − + + − ± , 

qua constante tolli debent termini 1 1
2 3− ; unde erit 

 
( ) ( )( )2 34 1

3 3 32 1 2 1 2 1xS x x x x x .− = − = − +  
 
Sic erit posito 4x =  summa quatuor primorum terminorum 

4
31 9 25 49 7 9 84+ + + = ⋅ ⋅ = . 

 
EXEMPLUM 2 

Quaeratur terminus summatorius huius seriei 
 

( )3
1    2       3       4                   

1 27 125 343 2 1

x

x .+ + + + ⋅⋅⋅ ⋅ + −
 

 
Quia est ( )3 3 22 1 8 12 6 1z x x x x= − = − + − , erit 
 

3

2 3

4 3 2

2

 2 4 3

24 24 6, 48 24,  48 ;dz ddz d z
dx dx dx

zdx x x x x,

x x x

= − + −

= − + = − =

∫  

 
sequentia evanescunt. Quare erit 

( )3 4 3 2

3 2 1
2

2 1
2
1

15

2 1 2 4 3

                           4 6 3

                                    2 2

                                                     Const

S x x x x x

x x x

x x

.,

− = − + −

+ − + −

+ − +

− ±

 

hoc est 
( ) ( )3 4 2 22 1 2 2 1S x x x x xx .− = − = −  

Sic erit posito 4x =  
 

1 27 125 343 16 31 496+ + + = ⋅ = . 
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132. Ex hac inventa generali expressione pro termino summatorio sponte sequitur ille 
terminus summatorius, quem superiori parte pro potestatibus numerorum naturalium 
dedimus cuiusque demonstrationem ibi tradere non licuerat. Quodsi enim ponamus nz x= , 
erit utique 1l

1
n

nzdx x +
+=∫  ; differentialia vero ita se habebunt 

 
( ) ( )( )

( )( )( )( ) ( ) ( )

3

2 3

5 7

5 7

1 2 3

5 7

,  1 ,   1 2

1 2 3 4     1 6   etc

n n ndz ddz d z
dx dx dx

n nd z d z
dx dx

nx n x n n x ,

n n n n x , n n n x .

− − −

− −

= = − = − −

= − − − − = − ⋅⋅⋅ −
 

 
Ex his ergo deducetur sequens terminus summatorius respondens termino generali nx , 
scilicet 
 

( )( )

( )( )( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
13

1 21 1 31 1 1 1
1 2 6 2 30 2 3 4
1 2 3 4 1 6 1 85 7 951 1

42 2 3 4 5 6 30 2 3 8 66 1 2 3 10
1 10 1 1211 13691 7

2730 1 2 3 12 6 1 2 3 14
+

n n nn n n n nn
n

n n n n n n n n n n nn n n

n n n n n nn n
dx

Sx x x x x

x x x

x x

− −+ − −
+ ⋅ ⋅
− − − − − ⋅⋅⋅ − − ⋅⋅⋅ −− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅⋅
− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

= + + ⋅ − ⋅

+ ⋅ − ⋅ + ⋅

− ⋅ ⋅

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 14 1 1615 173617 43867
510 1 2 3 16 798 1 2 3 18

1 18 1 2019 21174611 854513
330 1 2 3 20 138 1 2 3 22

1 22 123236364091 8553103
2730 1 2 3 24 6

 

+

+

+

n n n n n nn n

n n n n n nn n

n n n n n nn

x x

x x

x

− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅
− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

− ⋅⋅⋅ − − ⋅⋅⋅−
⋅ ⋅ ⋅⋅

− ⋅ ⋅

− ⋅ ⋅

− ⋅ ⋅ ( )

( ) ( ) ( ) ( )

24 25
1 2 3 26

1 26 1 2827 2923749461029 8615841276005
870 1 2 3 28 14322 1 2 3 30+ etc

n

n n n n n nn n

x

x x .

− −
⋅ ⋅ ⋅⋅

− ⋅⋅⋅ − − ⋅⋅⋅ −− −
⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅− ⋅ ⋅ −

 

 
quae expressio non differt ab ea, quam supra dedimus, nisi quod hic numeros 
BERNOULLIANOS   , ,A B C etc. introduximus, cum supra usi essemus numeris    , , ,α β γ δ , 
etc.; interim tamen consensus sponte elucet. Hinc ergo terminos summatorios omnium 
potestatum usque ad potestatem trigesimam inclusive exhibere licuit; quae investigatio, si 
alia via fuisset suscepta, sine longissimis et taediosissimis calculis absolvi non potuisset. 
 
133. Iam supra (§ 59) similem fere expressionem pro termino summatorio dedimus ex 
termino generali definiendo. Ea enim pariter secundum differentialia termini generalis 
procedebat; ab ista autem in hoc potissimum erat diversa, quod illa non integrale zdx∫  

requirebat, singula vero termini generalis differentialia per certas ipsius x functiones 
habebat multiplicata. Eandem igitur expressionem sequenti modo ad naturam serierum 
magis accommodato denuo eliciamus, ex quo simul lex clarius patebit, secundum quam 
coefficientes illi differentialium progrediuntur. Sit igitur seriei terminus generalis z, functio 
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quaecunque ipsius indicis x; terminus vero summatorius quaesitus sit s; qui quoniam, uti 
vidimus, eiusmodi erit functio ipsius x, ut evanescat posito 0x = , erit per ea, quae supra de 
natura huiusmodi functionum demonstravimus, 
 

2 3 3 4 4

2 3 41 1 2 1 2 3 1 2 3 4
etc 0xds x dds x d s x d s

dx dx dx dx
s . .

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− + − + − =  

 
134. Quia s denotat summam omnium terminorum serei a primo usque ad ultimum z, 
perspicuum est, si in s loco x ponatur 1x − , tum priorem summam ultimo termino z 
mulctari; erit scilicet 

3 4

2 3 42 6 24
etcds dds d s d s

dx dx dx dx
s z s .− = − + − + −  

ideoque 
3 4

2 3 42 6 24
etcds dds d s d s

dx dx dx dx
z .,= − + − +  

 
quae aequatio modum suppeditat ex dato termino summatorio s definiendi terminum 
generalem, quod quidem per se est facillimum. Ex idonea autem combinatione huius 
aequationis cum ea, quam paragrapho praecedenti invenimus, valor ipsius s per x et z 
determinari poterit. Ponamus in hunc finem esse 
 

3 4

2 3 4 + etc 0Bdz Cddz Dd z Ed z
dx dx dx dx

s Az . ,− + − + − =  

 
ubi A, B, C, D  etc. denotent coefficientes necessanos, sive constantes sive 
variabiles; nam cum sit 

3 4 5

2 3 4 52 6 24 120
etcds dds d s d s d s

dx dx dx dx dx
z .,= − + − + −  

 
si hinc valores pro 

3

2 3 etcdz ddz d z
dx dx dx

z, , , . in superiori aequatione substituantur, 

prodibit 

3 4 5

2 3 4 5

3 4 5

2 3 4 5

3 4 5

2 3 4 5

3

2 6 24 120

2 6 24

2 6

          

   + etc

           + etc

                     + etc

 

Ads Adds Ad s Ad s Ad s
dx dx dx dx dx

Bdz Bdds Bd s Bd s Bd s
dx dx dx dx dx

Cddz Cd s Cd s Cd s
dx dx dx dx

Dd z
d

s s

Az .

.

.

=

− = − + − + −

+ = + − + −

− = − + −

+
4 5

3 4 5

4 5

4 5

2
                              + etc

                                          + etc

                                etc

Dd s Dd s
x dx dx

Ed z Ed s
dx dx

.

.

.,

= + −

− = −

 

 
quae igitur series iunctim sumtae aequales erunt nihilo. 
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135. Cum ergo ante invenimus esse 

 
2 3 3 4 4 5 5

2 3 4 52 6 24 120
0 + etcxds x dds x d s x d s x d s

dx dx dx dx dx
s .,= − + − + −  

 
si superior aequatio huic aequalis statuatur, prodibunt sequentes litterarum 
A, B, C, D etc. denominationes 
 

2 3

4 5

2 2 6 2 6

24 2 6 24 120 2 6 24 120 etc

x xA B A

x C x CB A D B A

A x, B , C ,

D , E , .

= = − = − −

= − − − = − − − −
 

 
His igitur litterarum A, B, C, D etc. valoribus inventis ex termino generali z terminus 
summatorius s Sz=  ita determinabitur, ut sit 
 

3 4 5

2 3 4 5 + etcBdz Cddz Dd z Ed z Fd z
dx dx dx dx dx

Sz Az .= − + − + −  

 
136. Cum autem fiat 

2 3 21 1 1 1 1
2 2 6 4 12

4 31 1 1
24 12 24 etc

A x, B x x, C x x x,

D x x xx, .,

= = − = − +

= − +
 

 
patet hos coefficientes esse eosdem, quos supra (§ 59) habuimus; unde ista termini 
summatorii expressio eadem est, quam ibi invenimus, eritque propterea 

 
0 1 2 21 1 1 1

1 1 2 2
3 3 4 41 1 1 1

6 6 24 24

1

etc

A Sx S , B Sx x, C Sx x ,

D Sx x , E Sx x .

= = = − = −

= − = −
 

Hinc ergo erit 
 

3 4

2 3 4

2 3 3 4 4

2 3 4

2 3 4
2 6 24

2 6 24

etc

           + etc

dz ddz d z d z
dx dx dx dx
xdz x ddz x d z x d z
dx dx dx dx

Sz xz Sx Sx Sx Sx .

.

= − + − + −

+ − + −
 

 
Quodsi autem in termino generali z ponatur 0x = , prodibit terminus indici 0=  
respondens; qui si ponatur a= , erit  
 

2 3 3

2 32 6
+ etcxdz x ddz x d z

dx dx dx
a z .= − + −  

ideoque 
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2 3 3 4 4

2 3 42 6 24
+ etcxdz x ddz x d z x d z

dx dx dx dx
. z a,− + − = −  

 
quo valore substituto habebitur 
 

( ) 3 4

2 3 4
2 3 4

2 6 24
1 etcdz ddz d z d z

dx dx dx dx
Sz x z a Sx Sx Sx Sx .= + − − + − + −  

 
Cognitis ergo summis potestatum hiuc pro quovis termino generali ei conveniens 
terminus summatorius exhiberi potest. 
 
137.  Quoniam ergo geminam invenimus expressionem termini summatorii Sz pro termino 
generali z earumque altera formulam integralem zdx∫  continet, si istae duae expressiones 

sibi aequales ponantur, obtinebitur valor ipsius zdx∫  per seriem expressus. Cum enim sit 

 

( )

3 5

3 5

3

2 3

1
2 1 2 1 2 3 4 1 2 6

2 3
1 1 2 1 2 3

etc

1 etc.

d z d zdz
dx dx dx

dz ddz d z
dx dx dx

zdx z .

x z a Sx Sx Sx ,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

⋅ ⋅ ⋅

+ + − + −

= + − − + − +

∫ B CA

 

 
erit 

( ) ( ) ( )
( ) ( )

3

2 3

4 5 6 7

4 5 6 7

2 31 1
2 2 42 6

4 5 6 71 1
6 824 120 720 5040

etc

etc.

dz ddz d z
dx dx dx

d z d z d z d z
dx dx dx dx

zdx x z a Sx Sx Sx

Sx Sx Sx Sx .,

,

= + − − + + − −

+ − + + − − +

+

∫ BA

C D  

 
ubi    , , ,A B C D  etc. denotant numeros BERNOULLIANOS supra (§ 122) exhibitos. 
Sit verbi gratia z xx= ; fiet 22

0  2   et  1dz ddz
dx dx

a , x= = = ; hinc erit  

 

( ) ( ) ( ) ( )3 21 1 1 1 1 1 1 1 1 1
2 2 2 12 2 2 12 3 2 62 2 1xxdx x xx x xx x x xx x x x x= + − + + + + + + + +∫  

 
seu 31

3xxdx x=∫ ; dat autem 31
3 x differentiatum utique xxdx. 

 
138. Nova ergo hinc patet via ad terminos summatorios serierum potestatum inveniendos; 
quoniam enim ex coefficientibus ante assumtis A, B, C, D etc. hi termini summatorii 
facillime formantur, horum autem coefficientium quilibet ex praecedentibus conflatur: si in 
formulis § 135 datis loco istarum litterarum valores in § 136 traditi substituantur, erit 
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( )

( ) ( )

( ) ( ) ( )

1 1 1
2 2

2 2 31 1 2
3 3 2

3 3 4 2 23 3 21 1
4 4 2 2 3

4 4 5 3 3 24 3 4 3 21 1 4
5 5 2 2 3 2 3 4

                                      etc.

Sx x xx x

Sx x x x Sx x

Sx x x x Sx x Sx x

Sx x x x Sx x Sx x Sx x

⋅
⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

− = −

− = − − −

− = − − − − −

− = − − − − − − −

 

 
Hinc ergo summae potestatum superiorum ex summis inferiorum formari poterunt. 
 
139. Quodsi vero legem, qua coefficientes A, B, C, D etc. supra (§ 135) progredi inventi 
sunt, attentius intueamur, eos seriem recurrentem constituere 
deprehendemus. Si enim evolvamus hanc fractionem 
 

3 2 4 3 5 41 1 1 1
2 6 24 120

2 3 41 1 1 1
2 6 24 120

etc.
etc.

x xxu x u x u x u
x u u u u

+ + + + +
+ + + + +

 

 
secundum potestates ipsius u hancque seriem resultare sumamus 
 

2 3 4 etcA Bu Cu Du Eu .,+ + + + +  
 
erit, uti ante  invenimus, 
 

1 1
2 2 etcA x, B xx A .= = −  

 
sicque inventa hac serie obtinebuntur termini summatorii serierum potestatum. 
Illa autem fractio, ex cuius evolutione ista series nascitur, transit in hanc formam 1

1

xu

u
e
e

−
−

,  

quae, si x fuerit numerus integer affirmativus, abit in 
 

( )12 31 ;x uu u ue e e e −+ + + + ⋅⋅⋅ +  
 
cum ergo sit 

( )

2 3 4

2 3 4

2 3 4

1 1 2 1 2 3 1 2 3 4
2 2 4 8 16

1 1 2 1 2 3 1 2 3 4
3 3 9 27 81

1 1 2 1 2 3 1 2 3 4

1

        1 1

      1                 etc

    1               etc.

    1               etc.

=1

u u u u u

u u u u u

u u u u u

xx u

e .

e

e

e

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−−

=

= + + + + +

= + + + + +

= + + + + +

+ ( ) ( ) ( ) ( )2 3 42 3 41 1 1 1
1 1 2 1 2 3 1 2 3 4 etc.u x u x u x u ,− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ + + +
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ideoque erit 

( )
( )

( )

2 2 21 1 1
2 2 2

3 3 31 1 1
6 6 6

1

1

1

                     etc

A x
B S x Sx x

C S x Sx x

D S x Sx x

.

=

= − = −

= − = −

= − = −

 

 
Unde nexus horum coefficientium cum summis potestatum ante iam observatus 
penitus confirmatur ac demonstratur. 
 
 


