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HYDRODYNAMICS SECTION SEVEN 
 

Concerning the motion of water through submerged vessels, where it is shown by 
examples, either how significantly useful the principle of the conservation of living forces 

shall be, or as in these cases, in which a certain amount is agreed to be lost from these 
continually. 

 
[This section lacks in some details initially; it is an extension of the last section, as here 
an empty tube with a hole in the base is either plunged into a large tank filled with water, 
and the oscillations of the water entering via the opening are observed; or the tube 
immersed in the tank is filled to a certain level above the outer water level initially, and 
the oscillations of the water within the tube are observed. In this case the mass of water 
oscillating is not constant.] 
 

FIRST PART. 
 

Concerning the descent of water. 
 
 §. 1. Imagine a cylinder filled with water, the bottom of which shall have a hole in it, and 
that submerged to a certain depth of still water, as if of infinite depth, and you understand 
easily the surface of the water contained in the cylinder to begin falling, and below a 
certain depth below the surface of the external water, then again it will begin to rise, and 
thus repeating itself. However these oscillations are completely different from the 
oscillations considered in the previous section, in which evidently the reciprocal motions 
are always in the reverse direction with the same motions which were preceding. 
Moreover, who could presume the reflux of the water here or the ascent to be the same as 
it was in the descent? [i.e. the mass of water oscillating is not constant, as in the last 
section.] If anyone should consider that to be the case, it is certainly quite wrong, even if 
the motion either were not diminished by the adhesion of the water to the sides of the 
vessel or otherwise by other kinds of obstructions, and the rules of the motion which 
prevail for soft bodies are not very different from those for elastic bodies, as far as in 
each case the bodies may be considered to be moving freely. I use this analogy, because it 
illustrates our argument particularly well: For indeed just as the rules of motion with soft 
bodies are determined correctly, if after a collision that part of the vis viva may be 
considered to be lost, which had depended on the compression of the bodies (for neither 
is this progressively restored to the motion as in elastic bodies); thus the ascent of the 
fluid will be defined no less correctly, if it may be examined carefully, how much of the 
vis viva [i.e. kinetic energy] may be communicated internally to the motion of the 
particles of the water at individual instants, at no time going to be returned to the 
progressive motion which we are discussing.  
[This would appear to be the first time anyone had the idea that the progressive motion of 
a body, or its kinetic energy in modern terms, can be transformed into the random motion 
of the individual particles of the body, or heat energy.] 
 
 §. 2. And thus since this matter may be deduced from that condition, so that it may be 
investigated, how much of the vis viva may be lost continually in this reciprocal motion, 
we will begin the investigation from this point.  
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Initially, moreover it is apparent all the vis viva present in the particles flowing out and 
passing to the external water, does not in any way advance the subsequent ascent or 
inflow of external water into the tube : This hypothesis is more apparent than to be in 
need of a further explanation : moreover it is concerned with the outflow of water, and in 
this case that alone is required to be considered. Now the other case arises, which pertains 
to the inflow of the water.  

Secondly, therefore it is of greater concern to me, when the water rushing in through 
the opening has a greater speed, than what the water present requires to ascend inside [the 
vessel], that excess may again invoke a certain internal motion [in addition] to the same 
motion within [the vessel], but bringing little or nothing to the ascent [potential]. Thus, if 
this shall be the case, and the cross-section of the opening 1 , with the cross-section of 
the cylinder , the ascent potential of the droplet bursting in shall be , and its 

velocity 

n nnv
n v , this particle will retain that part from its motion since the water [within 

the vessel] which has the common velocity v , and thence the ascent potential v will be 
conserved ; but the remainder of the ascent potential, evidently nnv v , is agreed to have 
gone over into the internal motion of the  particles. This hypothesis, whatever the 
physical situation and however close to the truth it may be, yet has a great use for 
determining the motion of fluids without notable error, as often as either it may be 
disrupted continually into a uniform vessel, which at this stage was assumed, or as when 
water is forced to pass through several openings; certainly I might have believed a single 
case, with the aid of which motion of this kind would be able to explain correctly 
wonderful phenomena. On this account I wish to think about this correctly, before the 
reader is diverted to other matters.  
[Note that from the continuity equation, an incremental change in the height of the water 
in the vessel dx corresponds to a change in the volume ndx in the vessel; this water flows 

out through an opening of cross-section 
th1

n
 of the upper vessel, and thus must travel with 

a speed n times as great; hence the ascent potential, corresponding to the square of the 

speed, becomes as great as in the vessel, or for this droplet of water released.] 2n 2n dv
 
 §. 3. Now therefore we will consider that question, by beginning from the descent of the 
water. We may consider the cylinder AIMB 
(Fig. 36), full of water as far as XY and 
submerged in the boundless water RTVS , thus 
so that its length shall be in the vertical 
position ; its base may have the hole PL, 
through which water from the vessel shall be 
able to flow out into the water flowing around. 
The velocity of the internal water is sought, 
after its surface has fallen through a given 
distance XC or YD, by putting MY or 

,  ,  IX a MV b MD x 
1

 , with the cross-
section of the opening , and finally with 
the cross-section of the cylinder . n

The solution will be the same as for the 
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similar question we gave in section three, but this solution certainly more general: yet it 
may be observed, because with a particle of the water CDFE taken infinitely small to 
equal the droplet PLON ejected from that for that time, the actual descent now shall be 
required to be estimated by the height DV or CT, as in the other case [discussed below] it 
was required to be defined from the whole height DM. 

Truly the velocity of the surface of the water CD shall be that which is due to the 
height v, and in the place infinitely nearby EF the same velocity will correspond to the 
height v ; and when the ascent potential of the water CDMLPIC shall be v, the ascent 
potential of the same nearby EFMLONPIE will be obtained, if the mass EFMLPIE, 

, may be multiplied by its ascent potential (

dv

ndxnx   )v dv , as also the droplet LONP, 

,multiplied likewise by its ascent potential nnv, and the sum of the products may 

be divided by the sum of the masses (nx): and thus this ascent potential may be had  

ndx

  ( )nx ndx v dv ndx nnv
v

nx

    
  

or 

.
xv vdx xdv nnvdx

x

  
 

 
Therefore the increment of the ascent potential 
 

vdx xdv nnvdx
dv

x

  
  

 (cf. §. 6 Sect. III). Truly this increment is required equally with the infinitely small 
actual descent, which (by §. 7 Sect. III by the note just given) is  

( ) ( )
.

n x b dx x b dx

nx x

     
 And thus such an equation will be had : 

 vdx xdv nnvdx x b dx     , 

 
which integrated in the due manner is changed into this : 
 

1 1

2 1

1
1 .

2 1

nn nn

nn nn

x b x
v x

nn nna a

 

 

  
            




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      
       

   

1

1
1 1

1 2

. . :  ;or 1 ;

1 ;or 1

;hence 

hence 
1 2

nn nn nn

x
nn nn nn

nn nn a

xnn nn
nn

a

i e vdx xdv nnvdx x b dx xdv nn vdx x b dx

;xdv nn vdx x b dx x dv nn x vdx x x b dx

v v
d x x b dx bx x dx

x x

x x
b v bx

nn nn

  

  
 

 

         

          

       
 

 
   

   





1 1 2 2
1 1

1 1

2 1

1 1 2 2

1
1 .

2 1

nn nn nn nn
nn

nn nn

nn nn

x a x a
x

nn nn nn nn

x b x
x

nn nna a

   
 

 

 

  
           

   
               





 

 

 Truly from such an equation such corollaries follow.  
 

§. 4. Just as, if the cross-section of the cylinder were in an infinite ratio to the opening, 

and hence considering 
x b

v
nn


 ; that height corresponding to the speed of the water, 

while it flows out, is x b  . From which it follows, the water is to flow out with a 
velocity, which a weight acquires by falling from some height of the internal water above 
the outer water, and from that until it has all flowed out, then both surfaces shall be on the 
level position, and then all motion will cease : and thus the water flows out by the same 
law, as if the base IM changed position with TV.  

However since the opening cannot be considered to be indefinitely small, the surface 
of the water inside descends beyond the surface of the water outside; and since it may be 
known to what depth xy the surface CD is going to fall, by making 0v  , or  

 

      1 1 1 11 2nn nn nn nnnn a x x a nn a b x b         ;  

 
yet however at no time will the internal surface fall below the surface of the external 
water to the same extent it was above the same height ; this deficiency arises from the 
ascent potential of the water removed during the descent, to which it must be 
proportional.  
 
 §. 5. It is to be observed, since there because the water may fall deeper within the 
cylinder, as the descent from the start should be raised, and when the bottom is perforated 
with a larger opening, still at no time shall all the water be able to flow out from the 
cylinder however great the elevation was before the descent and the part of the cylinder 
submerged were as small as you please, and likewise either the opening or the whole base 
itself may be put in place to drain the water.   
[i.e. Bernoulli claims that there is no over-damped or  critically damped situation, where 
the oscillations die away exponentially.] 
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§. 6. The speed of the inner water surface is a maximum, when there is taken 
 

 1: 21

.
2

nnnna
x

nna nnb a b

 
      

 

 
Hence if , clearly with the opening present equal to the opening of the whole 
cylinder, there becomes 

 n 1
x b

nn

, and the speed is a maximum, since both surfaces are 
placed at the same height. Because truly there are many, which cannot be diagnosed into 
these two cases, clearly ,  and these have many particular features, the 
same that I will now mention briefly separately.  

1 &  2nn 

 
§. 7. In the first place there shall be 1nn  , and there becomes ( )xdv x b dx   (by §. 3) 

or 
bdx

dv dx
x

   , which thus integrated, so that there becomes at the same time 

, gives 0 &  v x a

log ,
a

v x a b
x

     

or  

log .
a

v a x b
x

    

From thence such can be deduced.  
 

I. So that the maximum descent may be obtained by making log 0 ;
a

a x b
x

    but it is 

apparent from this equation, at no time does the letter x obtain a negative value, indeed 

neither can the whole vanish without contradiction, unless there may be put  
a

b
  , 

which shows it is not possible, as all the water shall flow out during the descent in that 
case and much less and with much less in what remains, as paragraph five confirms.  
 

II. The maximum velocity is such, which is due to the height log
a

a b b
b

  , and if the 

difference between a and b, which I may put c , shall be very small, doubtless with the 
very small excursions of the fluid arising in the ratio of the length, to which the cylinder 

is submerged, the log
a

b
can be put

2

c cc

b b
   , and therefore that height due to the 

maximum velocity,  or log
2

a cc
a b b

b b
   , which motion is proven to be exceedingly 

slow.  
But I will demonstrate in the following the whole motion remains the same with 

everything else equal, when cylinders are considered to be submerged indefinitely, the 
base perforated with whatever opening, thus so that the motion of the inner water may not 
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be retarded by a diminished opening ; because it may seem at first inspection certainly to 
be a unexpected, yet however the physical account of this will not be able to escape the 
mind more attentive to such matters. Clearly in this case it arises, because the vis viva, 
which may be produced in the tube, shall be as we may say infinite besides the vis viva of 
the water passing through the opening, and thus no consideration of its opening shall 
make the computation different.  

We will demonstrate also the motions resemble reciprocal motions and the oscillations 
both large and small to be isochronous amongst themselves, and for these we will 
determine the length of the simple tautochronous pendulum. 
 
  §. 8. Now there will be ; thus truly there will be had by §. 3:  

, or  
2nn 

 vdx xdv x b dx  

 
,

b x dxxdv vdx

xx xx


  

 
which integrated correctly will go into this  
 

log .
bx a

v b x
a x

    

 
 

2
[ . .  ;   ln ;   ln ;

const. ln ; when  , 0; const. ln ,  and ln ln .]

b x dxxdv vdx dv vdx b v b
i e x d x

xx xx x x x xx
v b b v b b

x x a v a a x
x x a x a x

           
 

              

    

 

If there is made log 0
bx a

b x
a x
   , x will give the place of maximum descent ; 

moreover the place of maximum velocity will be had, by making 
b a

ax c


a  , where by c 
the number is understood, of which the logarithm is one.  

Thus after we have tightened up the various cases for different magnitudes of holes, it 
remains that we consider how it may succeed in cases with different heights a and b.   
 
§. 9. And indeed in the first place if b may be placed as zero besides a, which will happen 
when the base of the cylinder only touches the surface of the external water, then the 
equation will produce  

1

2

1
,

2

nn

nn

x
v x

nn a





 
     

 

 
which equation indeed does not differ from that form, which was given in §.14 Sect. III 
for that case, where water put in place was ejected from the cylinder into the air. And 
often also I have found the cylinder to be emptied at the same time, either water squirts 
into the air, or the base may be submerged a little into the still water. This experiment 
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teaches us that the air offers little or no resistance to the external outflow, since the air 
resistance cannot exert an effect notably greater than eight hundred times [i.e. the 
resistance arising from the density of water in comparison]. And thus because this case 
provides nothing in particular which was not 
mentioned in the place cited, we will not 
tarry further with this : Rather we will 
investigate, what must happen, when the 
height of the internal water is above the 
external; how great the descent is from the 
start, is taken to be very small and ignored 
before the immersion of the cylinder; it 
satisfies this hypothesis, when the excess of 
the height a above the height b is 
exceedingly small (which excess again we 
will call c (as in §. 7)).  
 
§.10. And thus when  is put in 
place, also there is required to be 

a b c 
a x z  , and while each quantity, truly c and z, were 

negligible besides the quantities a and b, but if a x z  , there will be    andx a z 

  11

1 2 31 2

2
nnnn nn

z a zz   
  
 

4 3

        ( l)

1 2 3
                    etc.  

2 3

nnnn

nn nn

nn

x a z

a nn a

nn nn nn
a z



 



 

  

     
   

 

 
 This series is required to be continued as far as it suffices for our conditions ; but is will 
suffice up to three terms. Therefore in the integrated equation that we deduced in §. 3 we 
may put ,  x a z   & 
 

1 1

1 2

4 3

1 2
        ( l)

2

1 2 3
                    etc.  

2 3

nn nn

nn nn nn

nn

x a

nn nn
a nn a z a

nn nn nn
a z

 

 





   
     

 
     

   

3zz  

  
thus there will be : 

1 1
( l)

l 2

1 2
       1 1 ( l) .

l 2

nn nn zz
v a z a nn z

nn a

b z nn nn zz
nn

nn a aa

    
           

    
          

2

 



Daniel Bernoulli's HYDRODYNAMICAE Section VII. Tr. by Ian Bruce (2014)                                              

244  

 
In which equation if the canceling terms may be deleted, and a c  is put for b, and the 

term may be rejected which affects the quantity 
czz

aa
, the simpler equation is produced :  

2
,

2

cz zz
v

a


  

 
from which formula, since the letter n has disappeared, we have an indication that no 
magnitude of the opening pertains to the motion of the inner water, the origin of this 
matter I have just indicated above (§. 7).  

Moreover in the following we will demonstrate, this motion does not differ from the 
subsequent reflux motion, and hence the oscillations become tautochrones. However 
before I go on to other matters I have been led to be reminded, in this calculation the  

quantities  and 
c

a a

z
 not only are very small besides unity, but also besides 

1

nn
 in which 

case they should be considered infinitely small,  which considerations we bear in mind on 
setting up experiments; certainly it is allowed to call the theorem to account by 
experiment by diminishing certain infinitely small quantities without sensible error, 
which in the theory were considered as infinitely small,  but it is required to make 
everything subject to this law in the experiment. Thus for example, if in a cylinder any 
base was absent, on putting , and that submerged may be put to a depth of thirty five 
inches, the experiment will be supposed accurate enough, when the water before the 
oscillations had risen only to a height of one inch above the surface of the surrounding 
water; while neither will the error be noteworthy, either if the lower opening may be 

blocked off to half then with 

1n 

1
 to 

c

a nn
 present as 1 to 9, which ratio in our experiment at 

this point can be ignored without risk  

[i.e. here and 36 and 1a c 
1

36

c

a
  ; in the first case 1 1

2 4
 and n nn  , hence 

1 1 1
 to 4

36 9n
  to 

c

a n
; note that Bernoulli is using diameters here and below]: 

 
 but if now you put the diameter of the tube to be twice the diameter of the opening, with 
three quarter parts of the whole aperture closed off, now there becomes 

1
 4 and  to 

c
n

a n


n
 as 4 to 9, which ratio will no longer be small enough, that the 

experiment may be able to be confirmed with sufficient precision with the conditions of 
the theory.  

And thus here again it will be convenient to inquire, which of these cases it shall be 

required to put in place, in which 
1

to 
c

a nn
 may have a noteworthy ratio between each 

other, truly each quantity certainly shall be small, which happens without doubt when the 
cylinder is submerged the deepest, but likewise the base with a very small hole bored 
through.  



Daniel Bernoulli's HYDRODYNAMICAE Section VII. Tr. by Ian Bruce (2014)                                              

245  

 
 §. 11. But that case which we have just considered, is better to be deduced from the 
differential equation of paragraph three, than from the integral, as done above: moreover 
it is possible under these circumstances to reject the term vdx before , and thus to 
assume, 

nnvdx

 xdv nnvdx x b dx    , 

 
 in which again if there is put , the equation is produced   and   a b c a x z   
 

  ,adv zdv nnvdz c z dz     

 
the second term of which zdv again can be ignored before the first term, thus so that it 
becomes  
 

  .adv nnvdz c z dz    

 
 Here there is put (by taking  for the number, of which the hyperbolic logarithm is one) 

1
nnz

av
nn




 q ; in this manner the last equation will be changed into this : 

 

 
nnz

a adq nn c z dz


  , 

 
 or  

 
nnz

aadq nn c z dz   . 

 
However this is required to be integrated, so that z and v or also z and q vanish together ; 
therefore there will be had :  

,
nnz

aa a
q c z c

nn nn
      

 
 

or finally 

1 1
.

nnz

aa a
v c z c

nn nn nn nn



          
   

 

 
Truly from that equation there can be deduced :  
 

I. It was found to arise again, by the other method as in paragraph ten, 
2

2

cz zz
v

a


 , 

namely if again the number 
nnz

a
 may be put very small. Truly so that it may become 
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apparent, it is required to resolve the quantity of the exponential 
nnz

a


 into a series, 
which itself is equal to,  
 

4 6 3

3
1  e

2 2 3

nnz n z n z

a aa a
    tc.,


 

 
from which for our search the first three terms suffice ; but there with the value 
substituted and with the term rejected as required to be rejected, so that it is found as I 
said :  
 

2

2

cz zz
v

a


 . 

 

II. But if in turn 
1

nn
 may be put infinitely greater than 

a

z
 or 

a

c
, because then 0

nnz

a


 , 

and so that  0
a

nn
  , it is understood to become 

c z
v

nn


 , or 

x b
v

nn


 , as in § 4. 

 
 III. However neither of the previously presented formulas appear to have a place without 

a notable error, when the number 
nnc

a
 lies in the middle, clearly neither infinitely large 

nor indefinitely small, and yet each quantity 
1

nn
and 

a

c
 is infinite.   

For example, were the height indicated by c of one inch, with the immersion of the 
cylinder b, 80 inches, and a itself 81 inches; then the diameter of the tube may be put to 

be three diameters of the opening, that is, 81nn  , there will be 
2 2 zz

v
nn

 
  , and if 

again there may be put , so that the height corresponding to the velocity may be 

found, when each surface is placed on the level, it will be 

 z c 1
2

v
nn





 , that is, 

approximately 1
307 inch.v , since following paragraph ten there ought to arise 

1
162 inch.v   and following paragraph four 0v  . In the same example the whole interval 

arises, which the surface travels through, not entirely the eight-fifth part of one inch, and 
the position of the maximum velocity is about the sixty-ninth part of the same measure 
below the initial height. 
 
  §. 12. It shall not be more difficult to extend to the shapes of all vessels, which have 
been mentioned so far, indeed also to finite volumes, by which the external water may be 
determined : but the formulas generally thus become prolix, so that I will consider more 
prudently to pass by the same in silence, and perhaps to show the method by some 
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particular example, so that the theory shall be applied to any others requiring to be 
elicited.  

More particular attention is deserved, which I have indicated about the motion of water 
in the greatly enlarged lower openings of the deepest tubes, because in these the motion 
of the oscillations as in pendulums is of constant duration [i.e. period], and the flow of 
the waves in the sea is shown by these. But I have judged to treat first generally the reflux 
of water in submerged cylinders, and showing according to this hypothesis the reflux not 
to differ from the preceding flow, as the whole oscillatory motion may be examined. 
Therefore we will comment now on this reflux, thereafter each motion shall be combined 
in different cases,  lest it should be desired somehow in a proof.  
 

PART TWO. 
 

Concerning the ascent of water. 
 
 §. 13. After the water has descended in a submerged vessel, how great an amount is let 
through depends on the nature of the experiment, two matters chiefly offer themselves for 
consideration ; in the first place the excess of the height of the external surface above the 
internal height and in the second place the vis viva of the product formed from the ascent 
potential by the mass of its water, which was ejected from the cylinder during the descent 
into the water at rest around the cylinder : for this vis viva, which it is not possible to 
return to the water in the cylinder, makes it most possible that much of the water shall be 
absent, so that less, than which fell in the first place can reach a height in the reflux : 
either this ratio is not yet unity, even if no impediments of retention or of adhesion may 
stand in the way, or of any other kind : another ratio was indicated in §. 2. However the 
measure of this ratio is required to be deduced from the ascent itself, since the former 
pertained to the descent only, with extrinsic impediments not considered, the reason 
being, because no water may be raised further above the level of the external surface in 
the ascent, than as far as the same was depressed below [in the descent]. For it is required 
to be observed, either to be about to happen, or with the water either flowing out through 
the smallest opening, so that it could ascend with the same velocity, or as if with all the 
base missing, it could burst out through the whole opening, but only after the impact of 
the influx, which was made on the internal water, the whole would be forced out moving 
to the same height: Truly whichever way this may depend on correctly it is seen easily, 
generally almost all that same impetus to be expended on some inner motion [of the fluid 
particles], which may not advance the ascent; moreover I say it may be noted generally 
(which I wish to note well) because when the opening is excessively large, it may be 
foreseen without difficulty, impetus of the water flowing in thus becomes fittingly, so 
that the inner motion thence may be advanced hardly at all; but on the other hand when 
the opening is small, it is clear,  the matter may be had otherwise. Therefore our 
hypothesis will be used correctly, either when the base is completely absent, or almost the 
whole is the opening (thus indeed the excess of the velocity of the water flowing in over 
the internal velocity of the water is almost nothing, or it is extremely small, and that 
impetus has no effect on this ascent) or also when the opening is a minimum, because 
thus all of the impetus is overcome. But if the opening had a ratio to the cross-section of 

the tube, such as 1 to 2 , or as 1 to 2, or thereabouts, the motion will be a little greater 
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than which follows from this hypothesis, because then remarkable the impetus makes the 
water rush in, nor is all lost by the nature of the happening. 

Therefore it is easy to foresee the following in the water without putting a calculation 
in place, after it had fallen from a certain height, effected by the reflux.  

 
I. Evidently there shall be no measurable reflux, if the opening shall be very small.  
 
II. Since the submerged part of the cylinder shall remain unchanged, at no time shall 

the water in the reflux progress beyond a certain boundary, or if the water in a previous 
descent were elevated indefinitely: for at no time, from whatever height it may begin the 
descend, will all the water flow out of the cylinder, as we have seen in §§. 5 & 7.  

 
III. When the descent may be understood to begin from the height XY, and subsequent 

ascent to be made as far as CD, the product of the actual descent of the mass of water 
XYDC as far as to TV by the mass, shall be a measure of the combined account of each, 
which, as §. 2 said,  make the ascent to differ from the preceding descent, and since the 
account examined in the second place may vanish, if all the base IM may be taken away, 
then that product shall be equal to the vi vivae of all the water ejected during the descent, 
thus so that without any calculation, besides that now put in place so far, the ascent of the 
water in the whole open cylinder may be able to be defined.  

 
IV. The ascent to be equal to the descent, when the cylinder is understood to be 

infinitely submerged, then with the aforementioned causes of diminution vanishing.  
 
V. Hence therefore either the oscillations are to be without end, because the later 

oscillations always shall be, or as if infinitely small on account of the submerged height: 
but external impediments, of which we have given no account thus far,  certainly acts so 
that all motion may stop quickly. 
 
§. 14. From there general provisions, we 
will subject the problems to a more accurate 
calculation: moreover I will give a two-fold 
solution, the one according to the principles 
already put in place, the other to be of some 
different kind.  

Therefore with both the diagram as well 
as the denominations retained as in §. 3, we 
will consider the water to be falling from 
the height XY as far as to xy, and from this 
terminus to begin its ascent;  calling My or 
Ix   and now after it has risen as far as to 
cd or ef, putting ,  Md df d   . With 
these thus prepared for the calculation, and 
again with the height due to the velocity of the water designated by v at cd, and by v dv  
for the similar height at the nearby position ef, we may inquire into the increment of the 
ascent potential of the water approaching, while the droplet LONP enters the cylinder, 
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and the surface rises from cd to ef ; but it is evident, since everywhere the ascent 
potential of the inner water multiplied by its mass may be expressed by n v (indeed 
without any attention paid to the internal motion [of the water particles]), to be the 
increment of the same product, n dv nvd  . However if besides we may consider the  
ascent potential (see §. 2), that the inflowing droplet loses nnv v nd , and which 
equally is due to the  actual descent of the water particles nd  through the height b  , 
it is apparent it is required to put 

 

 n dv v nd nd( )bnvd nnv     

dv nnvd

  , 

or,  
( )b d      . 

 
[i.e. the first equation is an expression for the conservation of potential plus kinetic 
energy of the droplet plus head of water, for the assumed speed of the droplet entering.] 
 
However the same may be found thus. Clearly we may consider the velocity of the 
droplet LONP as if it were zero,  before it may begin to flow in, and indeed to flow in and 
at once to acquire the ascent potential, which shall be nnv  although soon after its influx  
(by the notes to sec. §. 2) it will be agreed the motion to continue with the common 

velocity v . With which done thus the required reasoning will be:  Before the influx of 
the drop the ascent potential of the water cdMLPlc (of which the mass n ) , and 
the ascent potential of the drop LONP (of which the mass 

 v
nd )  0 ; therefore the 

ascent potential of all the water 
n v

n n
.

d

v 
cdMLONPIc

d  
 

  
 

But however after the droplet LONP flows in and LonP is put in place, it is assumed its  
ascent potential , but of the remaining water efMLonPIe (of which again indeed the 
mass 

nnv
n ) the ascent potential is v dv  ; therefore the ascent potential of all the water 

considered here after the influx of the droplet is : 
  

 nd nnv n v

n nd

  dv v nnvddv

d

  
 

  


 
  


 , 

 

since before the same flux was 
v

d


 

 : therefore the increment is taken ,
dv nnvd

d

 
 



 

or more simply,  
dv nnvd 




 . Now this same increment is required to be equated to the  

actual descent which the water makes by changing its position cdMLONPIc to the 
situation efMLPIe, which descent is equal to the fourth proportion for the mass of the 
interior water n , the drop nd  and the height Vf  or b  , thus so that the 

aforementioned descent shall be 
(b )d 




 : from which again such an equation  is 

found :  
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( )dv nnvd b d  ;       
 

truly of which the integral after the addition of such a constant due becomes   
 

1
1 ,

1

nn nn
b

v
nn nn

  
 

                    






 

 
as we may consider now according to the diverse circumstances of that.  
 
§. 15. And indeed if the cross-section of the tube were infinitely greater than the cross-

section of the opening, it is apparent the formula will become 
b

v
nn


 ; and hence the 

water rushes in with a velocity which shall be due to the height of the external surface 
above the internal surface,  nor then can it ascend above the external surface of the water.  

However when the cross-section of the opening has a finite ratio to the cross-section of 
the tube, the ascent shall be beyond the surface RS or as far as to st: but Vt will be less 
always than Vy, except when all the base is missing, then indeed there will be Vt . 
Just as we have warned in §. 5, in the descent there shall be a proportional difference 
between VY and Vy and it must originate from the ascent potential of the water ejected 
during the descent; thus now it is possible to be observed in the ascent the difference 
between Vy and Vt to originate from the pushing of the droplet LonP against the mass of 
the water thrown up, which indeed may not be advanced by the force, but may be 
expended on the useless internal motion between the particles, as indicated in §. 2. 
Therefore when all the base IM is absent, the water enters the tube with the same 
velocity, which the water had before entering the tube and that shall happen without a 
collision, which is the reason why in that case the water may ascend just as far above the 
surface RS, as it would be depressed below that, which the equation indicates, as we shall 
see soon.   

Vy

 
§. 16. The maximum ascent st will be found, 
by making . Therefore so that all the 
motion may be correctly defined, the 
formulas elicited in §§. 3 & 14 will be used 
alternately, so that now I will illustrate this by 
a single example, where .  

0v 

1nn 
Hence if , there becomes 1nn 
 

1

2
v b 1 ,

 
 


 


  

    
  

 

 
 and there will be , when there is taken 0v 

2b   , that is, when there is taken Vt Vy . Therefore if, for the sake of an example, 
the tube ABMI filled with water and with the whole base missing were immersed as far as 
to the middle by the external water, and its whole length may be called a, thus the water 
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will be disturbed so that initially it may fall below TV by the interval 0,297a, then it will 
be raised by a similar interval above TV, and again depressed below that by the interval 
0,240a,[actually 0,212a as noted by GKM] and that same line again crossed over, and so 
henceforth. 
 
 §. 17. It is apparent also when  is 0 , evidently with the tube emptied of all water, [the 
above equation] to be generally either 

1

b
v

nn nn


 


 

 

and the whole ascent consequently to be 
1nn

b
nn


, or the ascent above the exterior surface 

of the water .
b

nn
  

 
§. 18. I come now to tubes infinitely submerged, in which we have determined the 
descent and its conditions in §. 10. Moreover we have used the same clear method to 
define this case as we have used there: therefore the initial depression will be for us  

 ( )Vy b c   , thence the ascent made ( )yd z    . Thus there becomes 
  and z b c     , where the quantities z and c indeed are considered infinitely 

small on account of the quantity  . Hence there will be had :  
 

1
nn nn nn

z

z

 
  

                 
 

 
(by using the well known series expansion and taking the first three terms from that) 
 

1
1

2

nnz nn nn zz

 
 

   

 

 With these values substituted for ,   and 
nn

b



 
 
 

, the final equation of paragraph 

fourteen  

[i.e. 
1

1 ,
1

nn nn
b

v
nn nn

  
 

                    






] 

 
will be changed into this, 
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 

1 1 1

2 1 2

1
 

2 2

1
 :

2 2

c nnz nn nn zz nn nn zz
v z nnz

nn nn

z nn zz nnzz
c z

cz zz nn czz

  
  


  

  

     
            

           
  


  





 

  
But it is possible to ignore this final term, and thus the equation becomes more simply :  
 

2  
,

2

cz zz
v




  

 
as n is no longer present in the equation: Nor is that different from the equation given for 

the descent in §.10, surely 
2  

,
2

cz zz
v

a


  when indeed the quantities a and  only differ 

by the small quantity 2c.  
Here also all the remaining are understood partially,  concerning the same tube without  

undue obstruction, which have been discussed in §. 10.  
 
§. 19. Therefore the descents and ascents are equal to each other ; for it is apparent from 
our equations, the liquid to be equally balanced on the other side of the surface of the 
external water. Then truly it follows chiefly from these formulas, the oscillations to be 
unequal among the isochrones themselves, but all shall be considered to be infinitely 
small on account of the submersion: Moreover the simple tautochronous pendulum to be 
of the same length as the submerged part of the tube. 

This same theorem differs from that, which was cited in §. 4 Sect. VI concerning the 
oscillations in a cylindrical tube composed from two vertical legs, in that, because there 
all the oscillations shall be tautochronous without excluding oscillations of finite 
magnitude, since in the present case the finite oscillations shall be of unequal duration ; 
then because there the length of the pendulum shall be equal to half the length of the tube, 
as here it shall be equal to the whole length, although if the matter may be considered 
correctly,  here there shall be agreement rather than disagreement being discussed on 
account of the tube, which in the former case is doubled  
 
§. 20. Each of the oscillations generated is illustrated by the nature of the waves disturbed 
by the wind: nor indeed will they be moved, than because the water in these continually 
shall ascend and descend again. Thus it is apparent what Newton said, the times of he 
oscillations to be in the half ratio of the lengths of the waves [i.e. as the square root of the 
wavelength; now known to be true only for waves in very deep water], because he put the 
shape of the waves to be constantly similar and hence the lengths of these to be 
proportional to the depth, to what the water is disturbed. But it is plausible that to be the 
depth, which a simple pendulum tautochronous with the waves, certainly for example  
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1
360 Paris ft., if an ascent or descent of the waves of one at a time may be made in two 

second intervals.  
 
§. 21. Although I may have been unwilling, to avoid the prolixity of the calculation, to 
follow this argument to its full extent, and on that account I have performed the 
calculations only for cylindrical vessels, yet because in the case of infinite submersion the 
pronouncements and theorems lose little of their great ingenuity, I may add on a general 
theorem generally for the oscillations of water in whatever kind of unequal tubes, with 
the demonstration only omitted, which will be remedied by what has been said elsewhere, 
especially  from those matters set out in Sect. VI §§. 6, 7 etc, as far as § 20. But it is 
required to be made, that the upper part of the vessel in which the movements are made, 
shall be of a cylindrical construction.  
 
§. 22. Therefore let bd be the length of the vessel 
submerged (Fig. 35b). bF may represent its cross-
section at the position of the surface, and thus the 
vessel formed is put in place, so that the curve FGH 
shall be the scale of the cross-section: the line bc may 
be taken and the curve becomes LMN, of which the 

applied line everywhere cM shall be 
2bF

cG
 ,  and the 

length of the pendulum  isochronous with the 
oscillations of the water surface shall be = volume 
bdNL divided by bL. 
 

Corollary. 
 
 §. 23. It follows from the preceding paragraph, if the submerged tube were a cone, and it 
should have a cross-section in the neighborhood of the water surface, which shall be to 
the submerged opening as m to n, the length of the isochronous pendulum with the  

vibrating water to the length of the submerged tube to be, as to m n , that is , as the 
roots of the aforementioned cross-sections, and if the tube may be placed in the correct 
manner likewise in the inverted manner only not totally submerged, the lengths of the 
isochronous pendulums to be in the contrary ratio of the submerged openings.  
 

General Scholium. 
 
 §. 24. Because the matters encountered in this section generally depend on new 
hypothesis, there will be a greater need to test these by experiments. Indeed I have put in 
place different experiments, not trivial but individual ones that I had considered to carry 
out according to a plan: what I have done I will review below. Meanwhile so that a safer 
comparison can be brought to bear regarding the agreement of experiments with theory, 
initially it will be required to see clearly with regard to the circumstances of the 
properties, as well as to what extent the contraction of the flowing jet shall disturb the 
calculation (the nature of which I have established in Sect. IV) : because the greater part 
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of the inconvenience can be removed, if it can be arranged that the sides of the lower 

opening may form some small cylinder, scarcely of half a line of height [i.e. 
th1

12
of an 

inch], whereby regarding the matter, the fourth experiment pertaining to section four may 
be recalled. Then also it is required to extend our thoughts to the resistance arising from 
the adhesion of the water, which indeed slows down the motion a little, if you consider 
the times of the oscillations, moreover they will detract much from excursions of the 
water, especially if the tubes may be taken narrower and longer. Therefore there will be 
required to be more faith with the experiments, which were made near the times of the 
oscillations, because these times certainly were not diminished much by the excursions of 
the water. In the account of the first kind of experiments, where the excursions of the 
fluid in the tubes,  both descending as well as ascending have come to be inquired into 
and to be observed, here I have used careful consideration, so that I would wind a thread 
around the tube in that place, where I was expecting the water either was going to 
descend or to ascend, likewise the thread after many repetitions of the experiment I have 
finally located thus, so that the surface of the oscillating fluid would extend neither nearer 
nor farther. Also the remaining places, which were observed in the tube, I noted equally 
by a thread wound around the tube. Because then it pertained to the time of the 
oscillation, because these decreased most quickly and became imperceptible and clearly 
were zero, that not to be able to be sought other than by finding after many runs of the 
experiment the length of the simple isochronous pendulum, which while it was swinging 
a finger was placed on the opening of the tube and that removed from there at the precise 
instant of time, so that the pendulum and the fluid would begin to oscillate at the same 
time.   
 

Experiments referring to Section seven. 
 

Experiment 1. 
 

I used a cylindrical glass tube of almost four lines diameter, [equal to] the whole 
aperture below. With the water standing in the widest clear vessel, I submerged the tube 
to a depth of  44 lines. and I moved a finger over the top of the opening, lest by pulling 
out the tube a part should drop into that water : then I extracted to tube to a height of 22 
lines, thus so that both a part of the tube should be submerged, as well as the height of the 
inner water should be 22 lin. above the external water, and soon with the finger removed 
I observed the descent of the surface in the tube, and that was seen to be 1

2
9  lin. below 

the surface of the still water.  
But according to §.7 there should be a fall of thirteen lines ; the deficiency of three and 

a half may be considered to be attributed to the adhesion of the water to the wall of the 
tube.  

I repeated the whole experiment with the descent observed, so that I could test the 
approximate ascent : Moreover this was apparent to me to be 8 lin., which according to  
paragraph sixteen, by having with respect to the previous ascent, ought to have been 1

2
9  

lines., surely as great an amount as the preceding descent. However there the experiment 
was deficient by only one and a half lines, since in the first part of the experiment it had 
been deficient to the extent of three and a half lines, because doubtless the greater the 
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displacement made and that with a greater velocity, thus so that the impediments which 
increase together with the velocity, certainly would be come upon to be greater.   
 

Experiment 2. 
 
I used with the same tube, but there strengthened by a plate, which had been bored with 

an opening in the ratio of cross-section 1
2  to the cross-section of the tube ; when the 

surface of water in the tube was raised eighteen lines above the surface of the still water, 
and submerged to just as many lines,  I saw the surface of the water in the tube to be 
falling almost five lines below the still water. However paragraph eight argues a descent 
of 1

2
7  lines; the deficiency, which was more than 1

2
2 lines, again I consider to the 

adhesion of the water to the walls of the tube.  
Then I sent the tube to a depth of  18 lines with the same plate attached with a finger 

placed on top, completely empty of water: with the finger removed the water rose by 
eight whole lines, with §.17 indicating nine lines for this case. 

 Because this difference certainly was smaller, than in the descent, on account of the 
reason I have ascribed, as I have shown at length in paragraph thirteen, since I may say 
the motion arising to be a little greater, since the cross-section of the opening with respect 

to the tube notably to be had as in the ratio 1
2  to 1, or almost to be had, as what follows 

from the hypothesis: and thus concerning this matter it certainly becomes clear, the tube 
used to be shorter and wider, so that the effect of almost all the other impediments can be 
removed, and I have seized upon the following experiment.   
 

Experiment 3. 
 
I used a tube the diameter of which was more than seven lines, which I had taken care to 
have made from iron, because a good enough glass cylinder was not at hand: its length 
was four inches and six and a half lines: its cross-section to the ratio of the opening was 
indicated by n  and . With this tube I undertake this experiment thus :  1,860 3, 458nn 

Evidently with the top end stopped up  I tested repeatedly, to what depth it was 
required to be submerged in the greatest extent of still water, so that with the extended 
finger removed, which stopped up the opening, water would rise to precisely the edge of 
the same orifice, and would flow beyond no further. Truly I found this depth to be 3 
inches and three lines; therefore the ascent above the external water was of one inch and 
three and a half lines, indeed since with all the impediments removed it ought to be able 
to ascent to a little beyond eleven lines according to paragraph 17. Therefore §.13 advised 
correctly, that the ascent can be a little greater in cases of this kind than the hypothesis 
postulates. Soon I attached another base to that tube; now there was 

 it was with difficulty to ascertain the success of this 
experiment correctly, because the surface in the ascending tube was with bubbles always: 
yet it was seen, now the tube was required to be immersed to a depth of 4 inches with two 
or three lines, thus with the water remaining outside around four lines, in short as the 
theory indicates.  

3,68,   13,54 :n and nn   

 



Daniel Bernoulli's HYDRODYNAMICAE Section VII. Tr. by Ian Bruce (2014)                                              

256  

Experiment 4. 
 

A cylindrical glass tube, which had a diameter of around three lines, I immersed to a 
depth of 20 inches and I made, so that the water in that would be balanced with the water 
first raised to a height of around one inch. It could not make more than four or five 
noteworthy complete swings to and fro, nor thus was I able with any rigor to measure the 
length of the simple isochronous pendulum ; yet that was seen by me to be 22 or 23 
inches; from which I inferred the adhesion of the water to the walls of the tube not only 
diminished the displacements but also delayed the times of the oscillations a little : for 
following §. 19 it ought to have been made by the aforementioned length of only twenty 
inches. I have found the same in oscillations, which we have handled in the above 
section. 

 The rest blocked off, with the lower orifice almost reduced to half, I was unable to 
observe whether the displacements thence were to be diminished or the oscillations 
retarded, which agrees with these, which may be found in §.7 & §.18.  
 

Experiment 5. 
 
I immersed a conical tube with a length of 21 inches with the wider end opening to the 
water, thus so that a single inch might project from the water: moreover the other opening 
was a little greater than twice the former. I found the length of the pendulum isochronous 
with the vibrations of the water in the tube to be found to balance at fifteen inches ; but 
following §.23 it must be the same with the length a little less than fourteen inches. 
Finally  likewise with the same tube used, but in the inverted position, the length of the 
isochronous pendulum was required to be taken a little more than twice that, which it was 
before, just as is indicated in the paragraph cited.    
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 HYDRODYNAMICAE SECTIO SEPTIMA 
 

De motu aquarum per vasa submersa, ubi exemplis ostenditur, quam insigniter utile sit 
principium conservationis virium vivarum, vel iis in casibus, quibus continue aliquid de 

illis perdi censendum est. 
 

PARS PRIMA. 
 

De descensu aquarum. 
 
 §. 1. Finge cylindrum aqua plenum, cujus fundum perforatum sit, illudque ad certam 
altitudinem aquae stagnanti veluti infinitae submersum, & facile intelliges superficiem 
aquae in cylindro contentae descensuram, & quidem infra superficiem aquae exterioris, 
dein rursus ascensuram & sic porro. Hae vero oscillationes admodum differunt ab 
oscillationibus in praecedente sectione consideratis, in quibus nempe motus reciproci 
semper sunt inverso ordine iidem cum motibus, qui praecesserunt. Quis autem hic 
praesumat refluxum aquarum seu ascensum eundem fore, qui fuerat descensus? Talia si 
quis statueret, is certe vehementer falleretur, etiamsi vel nihil motus diminuatur ab 
adhaesione aquarum ad latera vasis hujuscemodique aliis impedimentis, non secus atque 
regulae motuum a percussione pro corporibus elasticis valde diversae sunt ab iis, quae 
pro corporibus mollibus valent, utut in utroque casu corpora liberrime moveri censeantur. 
Utor hoc simili, quod argumentum nostrum egregie illustrat: Prouti enim regulae motuum 
in corporibus mollibus recte determinantur, si post collisionem ea vis vivae pars deperdita 
censeatur, quae in compressionem corporum impensa fuit (neque enim haec ut in 
corporibus elasticis restituitur motui progressivo); ita ascensus fluidi non minus recte 
definietur, si accurate examinetur, quantum vis vivae singulis momentis motui 
particularum aquearum intestino communicetur, nunquam rediturum ad motum 
progressivum, de quo sermo est.  
 
 §. 2. Cum itaque res eo deducta sit, ut exploretur, quantum vis vivae in motibus istis 
reciprocis continue perdatur, disquisitionem ab hoc incipiemus.  

Primo autem patet omnem vim vivam quae particulis effluentibus inest transire ad 
aquam externam nec ullo modo promovere subsequentem ascensum seu influxum aquae 
externae in tubum: Nimis haec est clara hypothesis, quam ut majori explicatione opus 
habeat: respicit autem aquarum effluxum & in hoc unica est consideranda. Venit jam 
altera, quae pertinet ad aquarum influxum.  
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Secundo igitur non minus perspicuum mihi quidem est, quod irruente aqua per foramen 
majori velocitate, quam quae aquae internae ascendenti inest, excessus ille rursus motum 
quendam intestinum in eadem aqua interna cieat, parum aut nihil ad ascensum 
conferentem. Hoc si ita sit, ponaturque amplitudo foraminis 1 , amplitudo cylindri n , 

ascensus potent. guttulae irrumpentis nnv , ejusque velocitas n v , retinebit haec 

particula motu suo, quem cum reliqua aqua interna communem habet, velocitatem v , 
conservabitque proinde ascensum potent. v ; reliquum autem ascensum potent. nempe 

ad motum particularum intestinum 
transiisse censendum est. Hypothesis ista, 
quamvis Physica sit & proxime tantum vera, 
tamen magnam habet utilitatem ad motus 
fluidorum sine notabili errore 
determinandos, quoties in vase uniformis 
continuitas, quae hactenus assumta fuit, 
praerumpitur, vel uti cum aqua per plura 
foramina transire cogitur; imo crediderim 
unicam esse, cujus ope hujusmodi motus 
mira phaenomena recte explicari possint. 
Quapropter velim, ut recte animo 
perpendatur, antequam ad alia divertatur 
lector.  

nnv v

 
 §. 3. Jam igitur quaestionem ipsam 
examinabimus, incipiendo ab aquarum descensu. Concipiatur cylindrus AIMB (Fig. 36), 
aqua plenus usque in XY & aquae infinitae RTVS submersus, ita ut longitudo ejus sit in 
situ verticali; habeat ejus fundum lumen PL, per quod aqua ex vase in aquam 
circumfluam effluere possit. Quaëritur velocitas aquae internae, postquam superficies 
ejus per datum spatium XC vel YD descendit, posita MY vel ,  ,  IX a MV b MD x  

n
, 

amplitudine foraminis , & denique amplitudine cylindri 1  . 
Solutio eadem erit, quam pro simili quaestione, sed ea admodum generali, dedimus in 

sectione tertia: observetur tantum, quod sumta particula aquae infinite parva CDFE 
aequali guttulae PLON eo ipso tempore ejectae, descensus actualis sit nunc aestimandus 
ex altitudine DV vel CT, cum in altero casu definiendus erat ex tota altitudine DM. 

 Sit nempe velocitas superficiei aqueae CD ea, quae debetur altitudini v, & in situ 
infinite propinquo EF respondebit eadem velocitas altitudini v dv ; et cum ascensus 
potentialis aquae CDMLPIC sit v, obtinebitur ascensus potent. ejusdem aquae in situ 
proximo EFMLONPIE, si multiplicetur massa EFMLPIE  ndxnx  per suum ascensum 

potent. ( , ut etiam guttula LONP )v dv  ndx  per suum itidem ascensum potentialem 

nnv, aggregatumque productorum dividatur per summam massarum (nx): habetur itaque 
iste ascensus potentialis 

  ( )nx ndx v dv ndx nnv

nx

    
  

 seu  
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.
xv vdx xdv nnvdx

x

  
 

 
Est proinde incrementum ascensus potent. 

vdx xdv nnvdx

x

  
  

 (conf. §. 6 Sect. III). Istud vero incrementum aequale censendum est cum descensu 
actuali infinite parvo, qui (per§. 7 Sect. III & per annotationem modo datam) est 

( )
.

x b dx

x


  Habetur itaque talis aequatio  

 

 vdx xdv nnvdx x b dx     , 

 
quae debito modo integrata mutatur in hanc 
 

1 1

2 1

1
1 .

2 1

nn nn

nn nn

x b x
v x

nn nna a

 

 

  
            





 

 
 Ex ista vero aequatione talia sequuntur corollaria.  
 
 §. 4. Fuerit amplitudo cylindri veluti infinita ratione foraminis, & erit censendum 

x b
v

nn


 ; ipsaque altitudo pro velocitate aquae, dum effluit, est x b  . Unde 

consequens est, aquam effluere velocitate, quam grave acquirit cadendo ex altitudine 
superficiei internae supra externam, & eo usque effluet, donec ambae superficies sint ad 
libellam positae, tuncque omnis motus cessabit: adeoque eadem lege aquae effluunt, qua 
si fundum situm IM mutaret cum TV.  

Cum vero foramen non potest ceu infinite parvum considerari, descendit superficies 
aquae internae infra externam; atque ut innotescat ad quamnam profunditatem xy sit 
descensura superficies CD, facienda est 0v  , seu  

 

      1 1 1 11 2nn nn nn nnnn a x x a nn a b x b         ;  

 
nunquam autem superficies interna tantum descendet infra superficiem externam, 
quantum super eandem elevata fuerat; provenit iste defectus ab ascensu pot. aquae 
durante descensu ejectae, cui debet esse proportionalis.  
 
 §. 5. Notabile est, quod cum eo profundius descendat aqua in cylindro, quo magis ab 
initio descensus fuerit elevata & quo majori lumine perforatum est fundum, nunquam 
tamen omnis aqua ex cylindro effluere possit quantumvis fuerit ante descensum elevata & 
pars cylindri submersa utlibet parva, ipsumque simul foramen vel totum fundum 
exhaurire ponatur.   
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§. 6. Velocitas superficiei aquae internae maxima est, cum sumitur 
 

 1: 21

.
2

nnnna
x

nna nnb a b

 
      

 

 
Si proinde , existente scilicet orificio cylindri toto aperto, fit  n 1 x b , & maxima est 
velocitas, cum ambae superficies sunt in eadem altitudine positae. Quia vero multa sunt, 
quae ex hisce aequationibus dignosci nequeunt in duobus casibus, nempe 

,  hique multa habent particularia, eosdem seorsim jam attingam.  1 &  nn  2nn 
 

§. 7. Sit primo , & erit 1nn  ( )xdv x b dx   (per§. 3) vel 
bdx

dv dx
x

   , quae sic 

integrata, ut sit simul ,  0 &  v x a 
 
dat  

log ,
a

v x a b
x

     

seu  

log .
a

v a x b
x

    

Exinde talia deduci possunt.  
 

I. Ut obtineatur maximus descensus, faciendum est log 0 ;
a

a x b
x

    patet autem ex 

ista aequatione, nunquam negativum valorem obtinere litteram x, imo nequidem totam 

evanescere sine contradictione, nisi ponatur 
a

b
  , quod indicat fieri non posse, ut 

omnis effluat aqua durante descensu in isto casu & multo minus in reliquis, quod 
confirmat paragraphum quintum.  
 

II. Velocitas maxima talis est, quae debetur altitudini log
a

a b b
b

  , atque si differentia 

inter a & b, quam ponam , sit valde parva, existentibus nimirum excursionibus fluidi 

perexiguis ratione longitudinis, ad quam cylindrus est submersus, poterit 

c

log
a

b
censeri 

2

c cc

b b
   ipsaque proinde altitudo maximae debita velocitati seu log

2

a cc
a b b

b b
    

quod motum admodum lentum fore arguit.  
Demonstrabo autem in sequentibus, totum motum caeteris paribus eundem manere, 

cum cylindri censentur infinite submersi, quocunque foramine fundum fuerit perforatum, 
ita ut motus aquae internae a diminuto foramine non retardetur; quod quamvis prima 
fronte admodum paradoxum videatur, non poterit tamen vera ejus ratio physica effugere 
animum ad haec attentiorem. In eo scilicet versatur, quod vis viva, quae in tubo generatur, 
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veluti infinita sit prae vi viva aquae per foramen transeuntis nec adeoque hujus foraminis 
consideratio computum diversum faciat.  

Demonstrabimus etiam similes esse motus reciprocos & oscillationes  tam majores 
quam minores inter se esse Isochronas, atque pro hisce longitudinem penduli simplicis 
tautochroni determinabimus. 
 
  §. 8. Fuerit nunc ; ita vero habetur vi §. 3 2nn   vdx xdv x b dx   , vel 

 
 

,
b x dxxdv vdx

xx xx


  

 
quae recte integrata abit in hanc 

log .
bx a

v b x
a x

    

 

Si fiat log 0
bx a

b x
a x
   , dabit x locum maximi descensus; locus autem maximae 

velocitatis habebitur, faciendo 
b a

ax c


 a , ubi per c intelligitur numerus, cujus 
logarithmus est unitas. Postquam sic varios perstrinximus casus pro diversis foraminum 
magnitudinibus, superest ut etiam consideremus, quid in diversis altitudinum a & b 
casibus succedere possit.   
 
§. 9. Et primo quidem si b nulla statuatur prae a, quod fit cum cylindri fundum tantum 
radit superficiem aquae exterioris, tunc prodit 
 

1

2

1
,

2

nn

nn

x
v x

nn a





 
     

 

 
quae quidem aequatio non nisi forma differt ab illa, quae §.14 Sect. III data fuit pro eo 
casu, quo aquae ex cylindro in aërem ejici ponuntur. Et saepe etiam expertus sum 
cylindrum eodem tempore evacuari, sive aquae in aërem ejiciantur, sive fundum aquae 
stagnanti tantillum submergatur. Docet haec experientia parum aut nihil obstare aërem 
externum effluxui, cum resistentia plus quam octingenties major notabiliorem effectum 
non exerat. Quia adeoque iste casus nihil particulare habet, quod non loco citato monitum 
fuerit, huic non ulterius immorabimur: Inquiremus potius, quid fieri debeat, cum elevatio 
aquae internae super externam, quanta ab initio descensus est, sumitur valde parva & 
negligenda prae immersione cylindri; cui hypothesi satisfit, cum excessus altitudinis a 
super altitudinem b (quem excessum rursus vocabimus (ut§. 7) c) est admodum parvus.  
 
§.10. Cum itaque ponitur , ponendum etiam erit a b c  a x z  , tumque utraque 
quantitas, nempe c & z, erunt negligendae prae quantitatibus a & b, sed si , erit a x z 

 &x a z    
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  11

1 2

4 3

1 2
        ( l)

2

1 2 3
                    etc.  

2 3

nnnn

nn nn nn

nn

x a z

nn nn
a nn a z a

nn nn nn
a z



 



 

   
     

 
     

   

3zz  

 
 Haec series quantum ad institutum nostrum sufficit est continuanda; sufficiet autem ad 
tres usque terminos. Igitur in aequatione integrata quam dedimus §. 3 ponemus,  x a z   
& 
 

1 1

1 2

4 3

1 2
        ( l)

2

1 2 3
                    etc.  

2 3

nn nn

nn nn nn

nn

x a

nn nn
a nn a z a

nn nn nn
a z

 

 





   
     

 
     

   

3zz  

  
sic erit  

1 1
( l)

l 2

1 2
       1 1 ( l) .

l 2

nn nn zz
v a z a nn z

nn a

b z nn nn zz
nn

nn a aa

    
           

    
          

2

 

 
In qua aequatione si termini se destruentes deleantur, atque ponatur a c pro b, 

rejiciaturque terminus qui affectatur quantitate 
czz

aa
, prodit simpliciter 

2
,

2

cz zz
v

a


  

 
ex qua formula, cum littera n evanuerit, indicium habemus, nihil magnitudinem orificii 
pertinere ad motum aquae internae, cujus rei originem jam supra (§. 7) indicavi.  

In sequentibus autem demonstrabimus, non differre hunc motum a subsequente motu 
refluo, hincque oscillationes fieri tautochronas. Priusquam vero ad alia pergam 

monendum duxi, in isto calculo quantitates &  
c

a a

z
 non solum prae unitate, sed & prae 

1

nn
 ceu infinite parvas positas fuisse, ad quod animus probe est ad vertendus in 

instituendis experimentis; licet utique theoriam infinite parvorum ad experimenta sine 
notabili errore revocare diminuendo admodum quantitates, quae in theoria ceu infinite 
parvae consideratae fuerunt, sed faciendum est, ut in experimento omnia huic legi sint 
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subjecta. Ita v. gr. si in cylindro omne fundum absit, posito 1n  , idque submersum 
ponatur ad altitudinem triginta quinque pollicum, satis accurate sumetur experimentum, 
cum aqua ante oscillationes elevata tantum fuerit ad altitudinem unius pollicis supra 
superficiem aquae circumfluae; nec dum error notabilis erit, si vel orificium inferius ad 

dimidium obstruatur existente tunc 
1

ad 
c

a nn
 ut 1 ad 9, quae ratio in nostro experimento 

tuto adhuc negligi potest: at si jam diametrum tubi duplam ponas diametri orificii, 

occlusis tribus quartis aperturae integrae partibus, jam fiet
1

4 &n    ad 
c

a nn
 ut 4 ad 9, 

quae ratio non satis parva amplius erit, ut experimentum conditionibus theoriae cum 
sufficienti praecisione satisfacere affirmari possit.  

Hic itaque jam porro inquirere conveniet, quid de his casibus statuendum sit, quibus 
1

 ad 
c

a nn
 notabilem quidem inter se habent rationem, utraque vero quantitas sit 

admodum exigua, quod nimirum fit, cum cylindrus profundissime submergitur, simul 
autem fundum parvulo est pertusum foramine.  
 
 §. 11. Sed iste, quem modo finximus, casus melius ex aequatione differentiali paragraphi 
tertii, quam ex integrali, ut antea factum, deducitur: potest autem pro his circumstantiis 
rejici terminus prae , atque sic assumi, vdx nnvdx
 

 xdv nnvdx x b dx    , 

 
 in qua si rursus ponitur , prodit  &   a b c a x z   
 

 adv zdv nnvdz c z dz    ,  

 
cujus secundus terminus z dv rursus prae primo negligi potest, ita vero habetur 
 

  .adv nnvdz c z dz    

 
 Ponatur hic (sumto  pro numero, cujus logarithmus hyperbolicus est unitas) 

1
nnz

av q
nn




 ; hoc modo mutabitur postrema aequatio in hanc 

 

 
nnz

a adq nn c z dz


  , 

 
 vel  

 
nnz

aadq nn c z dz   . 

 
Haec vero ita est integranda, ut z & v vel etiam z & q simul evanescant; habebitur igitur 
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,
nnz

aa a
q c z c

nn nn
      

 
 

vel denique 

1 1
.

nnz

aa a
v c z c

nn nn nn nn



          
   

 

 
Ex ista vero aequatione deducitur:  
 

I. Oriri rursus, ut paragrapho decimo alia methodo inventum fuit,  
2

2

cz zz
v

a


 , si nempe 

rursus ponatur 
nnz

a
 numerus valde parvus. Id vero ut pateat, resolvenda est quantitas 

exponentialis 
nnz

a


 in seriem, quae est ipsi aequalis,  
 

4 6 3

3
1  e

2 2 3

nnz n z n z

a aa a
    tc.,


 

 
ex qua pro nostro scopo tres priores termini sufficiunt; eo autem substituto valore 
rejectoque termino rejiciendo, reperitur ut dixi  
 

2

2

cz zz
v

a


 . 

 

II. At si vicissim 
1

nn
 infinities major ponatur quam 

a

z
 aut 

a

c
, quia tunc 0

nnz

a


 , ut & 

 0
a

nn
  , fiere intelligitur 

c z
v

nn


 , sive 

x b
v

nn


 , ut § 4. 

 
 III. Neutram vero praemissarum formularum sine notabili errore locum habere patet, 

cum  
nnc

a
numerus est mediocris, nempe nec infinitus, nec infinite parvus, & tamen 

utraque quantitas 
1

nn
& 

a

c
 infinita.   

Fuerit v. gr. elevatio indicata per c unius pollicis, immersio cylindri b 80 poll., ipsaque 
a 81 poll.; dein ponatur diameter tubi tripla diametri foraminis, id est, , erit 81nn 

2 2 zz
v

nn

 
  , atque st porro ponatur 1z c  , ut habeatur altitudo velocitatis, cum 

utraque superficies est ad libellam posita, erit 
2

v
nn





 , id est, proxime 1
307v  .poll , 
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cum secundum paragraphum decimum debuisset oriri 1
162 .v poll  & secundum 

paragraphum quartum . In eodem exemplo fit spatium integrum, quod superficies 
percurrit, non omnino octo quintarum partium unius pollicis, locusque maximae 
velocitatis est praeterpropter sexaginta novem centesimarum partium ejusdem mensurae 
infra altitudinem initialem. 

0v 

 
  §. 12. Non difficilius esset ad omnes vasorum figuras extendere, quae hactenus dicta 
sunt, imo etiam ad spatia finita, quibus aqua externa determinetur: fiunt autem formulae 
plerumque adeo prolixae, ut consultius duxerim easdem silentio praeterire, & specimine 
saltem aliquo particularem ostendere modum, quo theoria ad quoslibet casus alios 
eruendos applicanda sit.  

Attentionem particulariorem merentur, quae de motu aquarum in tubis inferius largiter 
apertis, & profundissime submersis indicavi, quia in his motus oscillatorius, ut in 
pendulis, constantis durationis est, & undarum in mari fluxus illustratur ab illis. 
Existimavi autem prius de refluxu aquarum in cylindris submersis generaliter tractandum 
esse, atque ostendendum in ista hypothesi refluxum non differre a praecedente fluxu, 
quam motus totus oscillatorius examinetur. Jam igitur de isto refluxu commentabimur, 
deinceps utrumque motum in diversis casibus combinaturi, ne aliquid in argumento 
desiderari possit.  
 

PARS SECUNDA. 
 

De ascensu aquarum. 
 
 §. 13. Postquam aquae descenderunt in vase submerso, quantum id ipsis natura rei 
permittit, duo potissimum consideranda se offerunt; primo excessus altitudinis superficiei 
externae supra internam & secundo vis viva seu productum ex ascensu potentiali in 
massam illius aquae, quae ex cylindro in aquam circumstagnantem durante descensu 
ejecta fuit: haec enim vis viva, quae redire non potest ad aquam in cylindro, facit 
potissimum ut aquae multum absint, quo minus pristinam, ex qua ceciderant, in refluxu 
attingant altitudinem: nec tamen unica est haec ratio, etiamsi vel nihil obstent 
impedimenta tenacitatis, adhaesionis, hujusmodique alia: altera ratio indicata fuit §. 2. 
Istius vero rationis mensura ex ipso ascensu est deducenda, cum prior ad descensum 
pertineat & sola, abstrahendo animum ab impedimentis extrinsecis, in causa est, cur non 
aqua in ascensu tantum supra superficiem externam elevetur, quantum infra eandem 
depressa fuerat. Notandum enim est, futurum fuisse, aquis vel per minimum foramen 
influentibus, ut eadem velocitate ascenderent, tanquam si omne fundum deesset, 
plenoque orificio irrumperent, si modo post influxum impetum, quem in aquas internas 
faciunt, totum exererent ad earum ascensum promovendum: Verum quicunque hanc rem 
recte perpendit facile videt, plerumque impetum istum totum fere impendi in motum 
aliquem intestinum, qui nihil ascensum promoveat; dico autem notanter plerumque (quod 
bene notetur velim) quia cum foramen magnum admodum est, non difficulter 
praevidetur, impetum aquarum influentium ita apte fieri, ut motus internus haud parum 
inde promoveatur; at cum foramen minus est, liquet, rem secus se habere. Recte igitur 
adhibetur hypothesis nostra, cum vel fundum omne abest, aut fere totum est perforatum 
(sic enim excessus velocitatis aquae influentis supra velocitatem aquae internae nullus, 
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aut valde exiguus est, & nullum illa in hanc impetum facit) vel etiam cum foramen 
minimum est, quia sic omnis impetus infringitur. Sed si foramen rationem habuerit ad 

amplitudinem tubi, veluti ut 1 ad 2 , vel ut 1 ad 2, aut circiter, major paululum erit 
motus quam qui ex ista hypothesi sequitur, quia tunc notabilem impetum faciunt aquae 
irruentes, nec is omnis per rei naturam perditur. 

Facile igitur est sine instituto calculo praevidere sequentes in aquarum, postquam ex 
certa altitudine delapsae fuerunt, refluxu affectiones.  

 
I. Nullum nempe fore refluxum sensibilem, si foramen sit valde parvum.  
 
II. Cum pars cylindri submersa non mutata maneat, nunquam aquas in refluxu certum 

terminum praetergressuras, si vel in infinitum elevatae fuerint aquae in praevio descensu: 
nunquam enim, ex quacunque altitudine incipiat descensus, omnes aquae ex cylindro 
effluunt, ut vidimus§§. 5 & 7.  

 
III. Cum descensus incipere intelligatur ab altitudine XY, subsequensque ascensus fieri 

usque in CD, fore productum descensus actualis massae aquae XYDC usque ad TV in 
massam, mensuram rationis utriusque combinatae, quae, ut§. 2 dictum, ascensum a 
praecedente descensu differre faciunt, & cum ratio secundo loco recensita evanescat, si 
omne auferatur fundum IM, fore tunc istud productum aequale vi vivae omnis aquae, 
durante descensu ejectae, ita ut sine alio calculo, praeter hactenus jam positos, ascensus 
aquarum in cylindro toto aperto definiri possit.  

 
IV. Ascensum fore aequalem descensui, cum cylindrus infinite submersus intelligitur 

evanescentibus tunc praefatis diminutionis causis.  
 
V. Hinc igitur oscillationes sine fine fore, quia postremae oscillationes semper sint vel 

uti infinite parvae ratione submersionis altitudinum: faciunt autem impedimenta aliena, 
quorum nullam hucusque rationem habuimus, ut omnis motus cito admodum cesset.   
 
§. 14. His generatim praemonitis, problema accuratiori calculo subjiciemus: duplicem 
autem dabo solutionem, alteram ad principia modo exposita accommodatam, alteram 
specie quodammodo diversam.  

Igitur retentis tum figura, tum denominationibus §. 3 considerabimus aquam ex 
altitudine XY descendisse usque in xy, & ab hoc termino ascensum suum inchoare; dicatur 
My vel Ix  & postquam jam ascendit usque ad cd vel ef, ponatur ,  Md df d   . His 
ita ad calculum praeparatis, designataque rursus per v altitudine debita velocitati aquae in 
cd & per v  simili altitudine in situ proximo ef, inquiremus in incrementum ascensus 
potentialis aquae accedens, dum cylindrum subit guttula LONP, superficiesque ex cd 
ascendit in ef ; perspicuum autem est, cum ubique ascensus potent. aquae internae 
multiplicatus per suam massam exprimatur per 

dv

n v (nec enim ulla attentio adhibenda est 
ad motum intestinum), fore ejusdem producti incrementum n dv nvd  . Si vero 
praeterea consideretur ascensus potent. nnv v (vid. §. 2), quem guttula influens 
nd perdit, quique pariter debetur descensui actuali particulae aqueae nd  per 
altitudinem b  , patet esse ponendum 
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  ( )n dv nvd nnv v nd b nd        , 

 vel,  
( )dv nnvd b d      . 

 
Idem vero aliter sic invenitur. Consideretur scilicet guttulae LONP qua si nullam 
velocitatem fuisse, priusquam influere inciperet, eandem vero statim atque influere 
incipiat, acquirere ascensum potentialem, qui sit nnv , quamvis mox post sui influxum 

(per annot. sec. §. 2) censenda sit motum continuare velocitate communi v . Quo facto 
sic erit ratiocinandum. Ante influxum guttulae est ascensus potent. aquae cdMLPlc (cujus 
massa n ) , & ascens. potent. guttulae LONP (cujus massa  v nd ) ; ergo 

ascensus potentialis ommis aquae 

0

.
v

d

n v

n n
cdMLONPIc

d

 
  

 
  

 

At vero postquam guttula LONP influxit situmque assumsit LonP, est ejus ascens. 
potent. , reliquae autem aquae efMLonPIe (cujus quidem massa rursus nnv n ) 
ascensus potent. est ; igitur ascensus potent. omnis aquae hic consideratae post 
influxum guttulae est  

v dv 

 nd nnv n v dv v dv nnvd

n nd d

    
   

     


 
, 

 

cum ante eundem fluxum fuerit 
v

d


 

 : cepit igitur incrementum ,
dv nnvd

d

 
 



 vel 

simplicius 
dv nnvd 




 . Istud vero incrementum aequandum est cum descensu actuali 

quem aqua facit mutando situm cdMLONPIc situ efMLPIe, qui descensus aequalis est 
quartae proportionali ad massam aquae internae n , ad guttulam nd  & altitudinem Vf 

vel b  , sic ut praefatus descensus sit 
( )db  




 ;

: unde iterum habetur talis aequatio 

 
( )dv nnvd b d       

 
hujus vero integralis post debitae constantis additionem talis fit  
 

1
1 ,

1

nn nn
b

v
nn nn

  
 

                    






 

 
quam nunc pro diversis ejus circumstantiis perpendemus.  
 
§. 15. Et quidem cum fuerit amplitudo tubi infinities major quam amplitudo foraminis , 

patet fieri 
b

v
nn


 ; & irruere proinde aquam velocitate quae debeatur altitudini 
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superficiei externae super internam, neque tunc ultra superficiem aquae externae fiet 
ascensus.  

Cum vero amplitudo foraminis rationem habet finitam ad amplitudinem tubi, ascensus 
fit ultra superficiem RS veluti usque in st: minor autem semper erit Vt quam Vy, nisi cum 
omne fundum abest, tunc enim erit Vt Vy . Prouti monuimus §. 5 in descensu 
differentiam inter VY & Vy proportionalem esse & originem debere ascensui potentiali 
aquae durante descensu ejectae, ita nunc observari potest in ascensu differentiam inter Vy 
& Vt originem habere ab illisione guttularum LonP in massam aquae superjacentis, quae 
quidem illisio non promovet ascensum, sed in inutilem motum intestinum impenditur, 
prouti indicatum fuit §. 2. Ergo cum omne fundum IM abest, aqua tubum eadem 
velocitate ingreditur, qua jam gaudet aqua tubum antea ingressa & nulla fit collisio, quae 
causa est cur in isto casu tantum ascendat aqua ultra superficiem RS, quantum fuerat infra 
illam depressa, quod aequatio, uti mox videbimus, indicat.   
 
§. 16. Determinabitur maximus ascensus st, faciendo 0v  . Igitur ut motus omnis recte 
definiatur, alternatim adhibendae erunt formulae §§. 3 & 14 erutae, quod nunc hoc unico 
illustrabo exemplo, quo .  1nn 

Si proinde , fit 1nn 
 

1
1 ,

2
v b

 
 

  
     

  





 

 
 eritque , cum sumitur 0v  2b   , id est, cum sumitur Vt Vy . Igitur si verbi gratia 
tubus ABMI aqua plenus omnique fundo destitutus fuerit ad medietatem usque immersus 
aquae exteriori, atque tota ipsius longitudo dicatur a, aqua sic agitabitur ut primo infra TV 
descendat spatio 0,297a, deinde simili spatio super eandem TV elevetur, rursusque infra 
eam deprimatur spatio 0,240a, eodemque lineam illam iterum transcendat, & sic porro. 
 
 §. 17. Patet etiam cum  est , tubo scilicet ab omni aqua vacuo, fore generaliter  0
 

1

b
v

nn nn


 


 

 

ascensumque integrum consequenter fore vel ascensum 
1nn

b
nn


supra superficiem 

exteriorem aquae .
b

nn
  

 
§. 18. Venio nunc ad tubos infinite submersos, in quibus descensum cum suis 
affectionibus determinavimus §. 10. Utemur autem eadem plane methodo ad hunc casum 
definiendum qua ibi usi sumus: erit nobis igitur depressio initialis ( )Vy b c   , 
ascensus inde factus ( )yd z    . Sic est   &  z b c      , ubi quantitates z & 
c sunt ceu infinite parvae considerandae ratione quantitatis a. Habetur hinc  
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1
nn nn nn

z

z

 
  

                 
 

 
(adhibendo seriem notam & ex illa sumendo tres primos terminos) 
 

1
1

2

nnz nn nn zz

 
 

   

 

 Substitutis istis valoribus pro ,   &  
nn

b



 
 
 

, mutatur aequatio ultima paragraphi 

decimi quarti in hanc, 

 

1 1 1

2 1 2

1
 

2 2

1
 :

2 2

c nnz nn nn zz nn nn zz
v z nnz

nn nn

z nn zz nnzz
c z

cz zz nn czz

  
  


  

  

     
            

           
  


  





 

  
Potest autem negligi iste ultimus terminus & sic fit simpliciter  
 

2  
,

2

cz zz
v




  

 
quam aequationem n non amplius ingreditur: Neque illa differt ab aequatione pro   

descensu §.10 data, nempe 
2  

,
2

cz zz
v

a


  quandoquidem quantitates a &  non differunt 

nisi quantitate minima 2c.  
Caeterum hic omnia etiam sunt subintelligenda, quae eodem §. 10 de tubo non nimis 

obstruendo dicta sunt.  
 
§. 19. Sunt igitur descensus & ascensus sibi aequales; nam ex aequationibus nostris patet, 
liquorem aequaliter librari ultra superficiem aquae externae. Deinde vero potissimum 
sequitur ex istis formulis, esse vel oscillationes inaequales inter se isochronas, modo 
omnes possint infinite parvae censeri ratione submersionis: Pendulum autem simplex 
tautochronum esse ejusdem longitudinis cum parte tubi submersa. 

Differt istud theorema ab illo, quod§. 4 Sect. VI de oscillationibus in tubo cylindrico 
ex duobus cruribus verticalibus composito citatum fuit, in eo, quod ibi oscillationes 
omnes non exclusis oscillationibus finitae magnitudinis sint tautochronae, cum in 
praesenti casu oscillationes finitae sint inaequalis durationis; deinde quod ibi longitudo 
penduli sit aequalis dimidiae longitudini tubi, cum hic sit aequalis integrae, quamvis si 
recte res perpendatur, hic potius sit consensus quam dissensus dicendus ob tubi, quae in 
priori casu est, duplicationem.  
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§. 20. Utroque oscillationum genere illustratur natura undarum vento agitatarum: neque 
enim aliter moventur, quam quod aquae in illis continue ascendant rursusque descendant. 
Ita patet quod dicit Newtonus, tempora undulationum esse in ratione dimidiata 
latitudinum undarum, quia ponit undarum formam sibi constanter esse similem & proinde 
earum latitudinem proportionalem profunditati, ad quam aquae agitantur. Verisimile 
autem est profunditatem eam esse, quae pendulo simplici cum undis tautochrono, nempe 
v. gr. 1

360 ped. Paris. si singulis binis minutis secundis fiat undarum ascensus 

descensusve.  
 
§. 21. Quamvis noluerim, ad prolixitatem calculi evitandam, hoc argumentum in omni 
sua extensione prosequi, propterque ea de cylindricis vasis tantum egerim, attamen quia 
in casu submersionis infinitae enunciationes & theoremata parum de sua concinnitate 
perdunt, superaddam theorema generale pro oscillationibus aquae in tubo utcunque 
inaequali, omissa tamen demonstratione, quae ex alibi dictis unicuique obvia erit, 
praesertim vero ex iis quae in Sect. VI§§. 6, 7 & seqq. usque ad 20 exposita fuerunt. 
Faciendum autem est, ut cylindricae sit structurae pars illa vasis superior, in qua 
excursiones fiunt.  
 
§. 22. Fuerit igitur bd longitudo vasis submersi (Fig. 35b). Repraesentet bF ejus 
amplitudinem in loco superficiei, ponaturque vas ita formatum, ut sit curva FGH scala 
amplitudinum: sumatur linea bc fiatque curva LMN, cujus applicata cM sit ubique 

2bF

cG
 ,  & erit longitudo penduli isochroni cum oscillationibus aqueae superficiei = 

spatio bdNL diviso per bL. 
 

Corollarium. 
 
 §. 23. Ex praecedente paragrapho sequitur, si tubus submersus conicus fuerit, habeatque 
amplitudinem in regione aquae superficiei, quae sit ad orificium submersum ut m ad n, 
fore longitudinem penduli Isochroni cum vibrante aqua ad longitudinem submersi tubi, ut 

 ad m n , id est, ut radices praedictarum amplitudinum, atque si tubus idem situ modo 
recto modo inverso submergatur tantum non totus, fore longitudines pendulorum 
isochronorum in ratione contraria orificiorum submersorum.  
 

Scholium Generale. 
 
 §. 24. Quae in hac sectione continentur, quia novis hypothesibus innituntur pleraque, eo 
magis operae pretium erit experimentis tentare. Ego quidem diversa institui, non vacavit 
autem singula quae mente conceperam exequi: quae feci inferius recensebo. Interim ut 
tutius judicium ferri possit de consensu experimentorum cum theoria, dispiciendum prius 
erit pro rerum circumstantiis, an & quantum fere contractio venae effluentis (cujus 
naturam exposui in Sect. IV) calculum turbare possit: quod incommodum maxima parte 
tolli poterit, si fiat ut orificii inferioris latera parvulum aliquem cylindrum efforment, vix 
dimidiae lineae altitudinis, qua de re animo revolvatur experimentum quartum ad 
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sectionem quartam pertinens. Deinde etiam animus advertendus ad resistentias ab 
adhaesione aquae oriundas, quae quidem parum retardant motus, si tempora 
oscillationum respicias, multum autem excursionibus detrahunt, praesertim si tubi 
strictiores & longiores sumantur. Igitur magis fidendum erit experimentis, quae circa 
oscillationum tempora facta fuerint, quia haec tempora a diminutione excursionum non 
multum admodum alterantur. Ratione primi experimentorum generis, quo excursiones 
fluidorum in tubis,  tam descensus quam ascensus inquirendi observandique veniunt, hac 
usus fui circumspectione, ut filum tubo circumvolverem eo in loco, ad quem aquas 
descensuras vel ascensuras esse expectabam, idemque filum post saepe repetitum 
experimentum ita tandem locavi, ut superficies fluidi oscillantis nec ultra nec citra 
excurreret. Reliqua etiam loca, quae in tubo observanda erant, pariter filo circumvoluto 
notavi. Quod deinde ad tempora oscillationum pertinet, quia hae citissime decrescunt 
fiuntque imperceptibiles & plane nullae, non potui illa aliter inquirere, quam explorando 
post saepissime iteratum experimentum longitudinem penduli simplicis isochroni, quod 
dum oscillabat digitum orificio tubi superimposui eumque eo praecise temporis puncto 
removi, ut & pendulum & fluidum oscillationem simul inciperent.   
 

Experimenta ad Sectionem septimam referenda. 
 

Experimentum 1. 
 

Tubum adhibui vitreum cylindricum diametri fere quatuor linearum, inferius totum 
apertum. Cum aquae, in vase pellucida amplissimo stagnanti, submersi ad altitudinem 
44lin. digitumque orificio admovi superno, ne extrahendo tubi partem descenderet in illo 
aqua: extraxi deinceps tubum ad alt. 22lin. ita ut  tam pars tubi submersa, quam altitudo 
aquae internae supra externam esset 22lin. moxque remoto digito observavi descensum 
superficiei in tubo infra superficiem aquae stagnantis eumque vidi fuisse 1

2
9  lin.  

Debuisset autem vi §. 7 descendere tredecim lineis; defectus trium linearum cum 
dimidia unice fere adhaesioni aquae ad latera tubi tribuendus videtur.  

Observato descensu totum experimentum repetii, ut ascensum quoque proximum 
experirer: Visus autem mihi fuit 8lin., qui vi paragraphi decimi sexti, habito respectu ad 
praevium descensum, esse debuerat 1

2
9  lin., nempe tantus, quantus fuit praecedens 

descensus. Hic vero experimentum unica tantum linea cum dimidia defecit, cum in prima 
experimenti parte ad tres usque lineas cum dimidia defectus adfuit, quia nimirum major 
ibi facta fuit excursio eaque velocitate majori, ita ut impedimenta, quae una cum 
velocitatibus crescunt, admodum majora offenderit.   
 

Experimentum 2. 
 
Eodem tubo usus sum, sed eo lamina munito, quae foramine erat pertusa amplitudine  

1
2  ratione amplitudinis tubi; cum superficies tubi esset octodecim lineis elevata supra 

aquam stagnantem, totidemque lineis fundum submersum, vidi superficiem tubi in 
descensu quinque fere lineis infra aquam stagnantem descendisse. Paragraphus octavus 
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autem descensum arguit 1
2

7  lin.; defectum, qui plusquam 1
2

2 lin. fuit, rursus adhaesioni 

aquae ad latera tubi adscribo.  
Deinde tubum hunc eadem lamina instructum admoto superius digito aquae immisi ad 

profunditatem 18 lin. totum ab aqua vacuum: remoto digito emersit superficies tubi supra 
aquam stagnantem integris octo lineis, cum §.17 earum novem indicat pro isto casu. 

 Quod hic defectus minor admodum fuerit, quam in descensu, rationi adscripsi, quam 
prolixe paragrapho decimo tertio indicavi, cum dicerem motum paullo majorem oriturum, 

cum foramen amplitudinem respectu tubi notabilem veluti in ratione 1
2  ad 1, aut circiter 

habuerit, quam qui ex hypothesi sequitur: atque ut ea de re certus plane fierem, tubum 
adhibui breviorem & ampliorem, ut omnis fere impedimentis alienis effectus 
praeriperetur, & experimentum cepi, quod sequitur.   
 

Experimentum 3. 
 
Tubum adhibui cujus diameter erat plus quam septem linearum, quem ex ferro confieri 
curavi, quia vitreus bene cylindricus non fuit ad manus: longitudo ejus fuit quatuor 
pollicum cum sex lineis & semisse: amplitudo ejus ratione foraminis indicata per n fuit 

 & . De isto tubo experimentum ita sumsi:  1,860 3, 458nn 
Obturato scilicet orificio superiori identidem tentavi, ad quam profunditatem 

submergendus esset aquae in area amplissima stagnanti, ut remoto protinus digito, qui 
orificium obtegebat, aqua ad limbum ejusdem orificii praecise ascenderet, nihilque 
praeterflueret. Istam vero profunditatem expertus sum 3 poll. cum tribus lineis; fuit igitur 
ascensus supra aquam externam unius pollicis & trium linearum cum dimidia, cum vel 
omnibus remotis impedimentis parum ultra undecim lineas ascensus fieri debuerit vi 
paragraphi 17. Recte igitur praemonitum fuit §. 13, non posse non ascensus fieri paullo 
majores in istiusmodi casibus, quam hypothesis postulat. Mox eidem tubo aliud applicui 
fundum; erat jam  difficile fuit experimenti successum recte 
dignoscere, quia superficies in tubo ascendens semper fuit bullata: visum tamen fuit, 
tubum nunc immergendum fuisse ad altitudinem 4 poll. cum duabus tribusve lineis, 
manentibus sic extra aquam praeterpropter quatuor lineis, prorsus ut theoria indicat.  

3,68,  &  13,54 :n nn 

 
Experimentum 4. 

 
Tubum cylindricum vitreum, qui tres praeterpropter lineas habebat in diametro, 

immersi ad altitudinem 20 poll. fecique, ut aqua in illo libraretur, elevata prius aqua ad 
altitudinem unius fere pollicis. Ultra quatuor vel quinque itus reditusque bene notabiles 
non fecit, nec adeoque omni rigore longitudinem penduli simplicis isochroni examinare 
potui; mihi tamen illa visa fuit 22 aut 23 pollicum; ex quo intuli adhaesionem aquae ad 
latera tubi non solum diminuere excursiones, sed & morari paulisper tempora 
oscillationum: debuisset enim secundum §. 19 esse praefata longitudo viginti 
tantummodo pollicum. Idem expertus sum in oscillationibus, quas in superiori sectione 
pertractavimus. 

 Caeterum obturato vel ad dimidium fere orificio inferiori, observare non potui, 
excursiones inde fuisse diminutas aut oscillationes retardatas, quod conforme est cum iis, 
quae § §. 7 & 18 habentur.  
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Experimentum 5. 

 
Tubum conicum longitudine 21 poll. immersi aquae orificio ampliore, ita ut unicus pollex 
extra aquam emineret: fuit autem alterum orificium alterius paululum plusquam duplum. 
Longitudinem penduli isochroni cum vibrationibus aquae in tubo libratae inveni 
quindecim poll.; debuisset autem secundum §. 23 esse eadem longitudo paullo minor 
quatuordecim pollicibus. Denique similiter eodem tubo usus, sed situ inverso, deprehendi 
longitudinem penduli isochroni tantillo plusquam duplam ejus, quae antea fuerat, prouti 
citato paragrapho indicatur.      
             


