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JOHANNE BERNOULLI.

Meditations
On Vibrating Strings,

with small weights set at equal intervals to each other.
Where nevertheless from the principle of the action of the unbalanced forces the number of vibrations for

one given oscillation of a pendulum of a given length D is sought. [see Opus tom. III. p.125, 126. ]

The vibrating string is
ACDEF &c., to which at
equal distances are joined
equal small weights C, D, E,
F, &c. which are placed
together as in Fig. 1, in order
that the individual small
weights can return at the
same time to the straight line
in the situation AB : from
which it follows, that the
velocities of the individual
weights and indeed their
forces and the accelerations
are in proportion to the
distances traveled through:  Cc, Dd, Ee, &c. But from the principles of statics [i. e. dynamics], the tension
of the string is [in the same ratio] to the force by
which any small weight such as E is urged towards e,
as the sine of the angle DEe is to the sine of the angle
DEF, or IEF, that is (on account of the strings in the
figure being almost straight, & the intervals between
the little weights being equal) as the total sine to FI.

[Note the use of the triangle of forces centred on
E:  the force triangle and the lines along which these
forces act, constitute similar triangles with sides
representing distances rather than forces in the second
triangle, which are superposed in the explanatory diagram: in this case ∆ EFI is viewed as the force triangle
for the mass E, which has the sides EF and EI for the tensions P and FI or Ee for the unbalanced force FE
acting on E;
thus,  P/sin (α) = FE/sin (θ).]

Therefore, from the  equality, the distances Cc, Dd, Ee, &c. are themselves proportionals to DG, EH, FI,
&c. respectively.
Now, DG = Gd - Dd = 2Cc - Dd = 2a - x; HE = He - Ee = [a + 2(x - a)] - y = 2Dd - Cc - Ee = 2x - a - y ;
FI = If - Ff = [x + 2(y - x) - z] = 2Ee - Dd - Ff = 2y - x - z ; & hence 2a - x : a = 2x - a - y : x = 2y - x - z : y
= 2z - y - t : z = &c
[Thus, in an inductive manner,
where t is the next
displacement not shown on
diagram, it is observed that if
the vertical displacements of
the masses located at xn are
considered as some function
f(xn), then the unbalanced
force is proportional to the
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difference of the gradients, or to the finite difference form of the second derivative : 2f(xn) -  f(xn-1) - f(xn+1),
for suitable n; as the horizontal distances are equal, they are omitted for simplicity. From the supposition,
these finite difference distances are in proportion to the distance from the axis in the same ratio as the force
acting on each particle is to the displacement according to the idea of simple harmonic motion : thus, for
example, in Fig. 4. (Fext. on F)/a = (Fext. on G)/x = (Fext. on H)/a; while the size of (Fext. on F)  α (2a - x),
(Fext. on G)  α (2x - 2a), and (Fext. on H)  α (2a - x),  as in part II of the  Lemma. Thus, the relations between
a, x, y, z, etc. can be established in the parts of this Lemma.]

From which the following Lemmas hold:

I. If there are two small weights, then  x = a, y =  0, with the others not considered. (Fig. III & IV;)

II. If there are three small weights, then  y = a, z = 0, with the others not considered; hence
2a - x : a = 2x - 2a : x, hence 2ax - xx = 2ax - 2aa & x = a√2.

III. If (Fig. V) there are four small weights, then y = x, z = a, & t = 0, with the others not considered; hence

 2a - x : a = x - a : x ; hence 2ax - xx = ax - aa  & .4
5

2
1 aaax +=

IV. If there are five small weights, then z = x, t = a, u = 0, the rest neglected ; hence 2a - x : a = 2x - a - y :
x = 2y - 2x : y ; from these ratios the two equations : xx = aa + ay, & yx = 2ax are obtained. From the first
equation  y = (xx - aa) : a ; from the latter  y = 2a ; hence x = a√3.

V. If there are six small weights, then  z = y, t = x,  u = a, s = 0, with the remainder ignored ;
thus 2a - x : a = 2x - a - y : x = y - x : y. From these two equations, xx = aa + ay, & ay - yx = -ax. From the
latter equation :
y = ax :(- a + x); from the other y = (xx - aa):a ; hence aax = x3 - axx - aax + a3, or x3 - axx - 2aax  + a3 = 0.

VI. If there are seven small weights, then  t = y, u = x, s = a, w = 0, without attending to the rest.. Hence
 2a - x : a = 2x - a - y : x = 2y - x - z : y = 2z - 2y : z; & thus three equations are obtained :
 xx = aa + ay, xy = ax + az & xz = 2ay. From the second equation,  z = (xy - ax) : a, from the third,
 z = 2ay : x ; unde y = axx : (x2 - 2a2) : a; therefore
 (x2 - a2) : a = ax2 : (x2 - 2a2),  hence aaxx = x4 - 3aaxx + 2a4 ; or x4 - 4aaxx + 2a4 = 0 ; and thus
 xx = 2aa + aa√2, & x = a√(2 ± √2) ; y = a ± a√2 ; z = (2a ± 2a√2) : √(2 + √2) = + 4√(4 + 2√2). Where it is
to be noted that the negative sign is not to be squared.

PROBLEM I.
If now the string or thread ALB (Fig. II) is considered without density and all the weight is loaded in

the middle in the small weight L ; the tension in the string is P ; the time is sought for the semi-vibration
through the distance LC. Let LC = a, AL or LB [AC in text] = b, then AL - AC = (AL2 - AC2) : (AL + AC)
= LC2 : 2AC = a2 : 2b, & ALB - AB = a2 : b, and the extension of the string will be the change in height for
the hanging weight P.

[We may note at this stage the manner in which the problem is set up : the string is considered to be
inextensible and massless, and changes in length are achieved by moving the large weight P up or down in
a frictionless manner. Each small weight is a s.h.o. with amplitude a, x, y, etc. According to Bernoulli, the
acceleration is proportional to the displacement, and the maximum velocity on passing through the
equilibrium position is proportional to the maximum displacement, which follows from energy
conservation. The maximum speed is that derived from a change in the potential energy (or due to the
action of the unbalanced forces or vi vivarum as termed by Bernoulli, using a word for force that was
originally applied in a military sense; the work/energy principle had been around for some time in various
vague forms, and as such is to be found in Newton's Principia, but never stated in an outright manner, as is
still the case here. Bernoulli has dealt with some problems that can be solved using the principle in an
earlier paper, as indicated above.) of a body freely falling under gravity through some height z; if there is
only one small weight m, then mgz = mv2/2, and mgz = Mga2/b; hence v = √(2gz). The choice is made that
2g = 1 to simplify the calculation, which means that Bernoulli uses the formula mv2   for the energy of
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motion, and as the time for a quarter period of a vibrating mass or chord is to be taken in the ratio with the
quarter period of a pendulum, the pendulum is given the same value of g to enable the quarter period to be
evaluated. If there are several  small weights, then the potential energy is portioned out according to the
amplitudes of the oscillations: thus, if the amplitude of one small mass is k times the amplitude of another
equal mass, then the maximum velocity is also k times as large, while the hypothetical distance of free fall
goes up by a factor k2.
The angular velocity ω of the s.h.m. is evaluated from the maximum velocity v from v = ωa , from which
the time for the quarter period if found to be πa/2v. ]
Let  z be the vertical height through which a freely falling weight  acquires a velocity equal to that which L
acquires in moving from L to C, which velocity is thus  equal to √z. The virtual work of the small weight L
= Lz  is equal to the virtual work of the stretching force  = (a2 : b) ×  P ; thus LbPaz ××= :2  [is the
equivalent height of the free falling body for the energy transfer]. Whereby truly the force drawing the
point L towards C is always in proportion to the distance LC [This force is 2Pz/b, the vertical components
of the tension]; it can be supposed that the diameter of a circle to the circumference to be as 1 to p [i. e. p =
π],  & v is the velocity of the point L at C. The time to pass through a distance LC, or the time of a semi-
vibration is equal to  ap : 2v = ap : 2√z = p√(b.L) : 2√P, & the time of one semi-oscillation of a  pendulum

of a given length  D is equal to .D2
1p  Hence D2

1p  is divided by p√(b.L) : 2√P, i.e. √(2P.D) : √(b. L)

gives the number of vibrations of the string during one oscillation of the pendulum D as
.)AB.L:D.P(2.LAB:D.P4 =

[In modern terms, the equation satisfied by the vibrating mass is :

. giving ;.2 L
P22
bmb

M
mb
Mg

mb
T

b
xTxm ====−= ω&& This is Bernoulli's result, where we note that L is a

mass, while P was originally a weight but now P is now a mass times by a unit acceleration to give the

correct dimensions. In any case, the velocity of L at C becomes v = ωa =  ,L
P
baav == ω Bernoulli's

result, and the time T/4 becomes  P
L

2
bp . This quantity is now to be compared with the quarter swing of a

pendulum of length l, for which :2 g
l

qpenT π= if in ,2 g
l

qpenT π= we substitute g = 0.5, then we obtain

,2
D

qpen pT = and the ratio of quarter periods becomes

LAB
DP

bL
PD

P
bLpD

quarterqpen pTT .
.2

22 .2 // === as required in Bernoulli's formula.]

PROBLEM II.
Now the string AFGB is stretched by the weight P, and is weighed by two equal small weights (Fig. 3),

each of which is equal to L2
1 , and which divide the string into three equal parts, AF, FG, GB. Again let FC

= GE = BE = a2 : 2b ; and thus AFGB - AB = a2 : b = for the fall of the weight P. Again let √z = velocity of
the point F located in C, or the point G in E; the vires vivae  of the small weights F and G together = Lz = vi
vivae of the large stretching weight P = (aa : b) × P, then  z = a2.P : b.L . Therefore the remainder is now
found as before, for if that quantity is now put into the formula for the number of vibrations, we obtain

: ).:.6().:.2().:.2( 3
1 LABPDLABPDLbPD == .

[In this case, the speeds of the masses m on the line AB are both equal to ωa, the total kinetic energy at
this point is mω2a2, which is equal to the change in the potential energy of the large mass M, which in turn

is Mga2/b; hence the frequency of the motion is .T and P
L

2quart.L
P b
bmb

Mg πω ===  Again,

,2
D

qpenT π= giving LAB
DP

bL
PD

P
bLD

quarterqpen TT .
..62

22 . // === ππ ]
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PROBLEMA III.
Now let there be three small weights (Fig. 4), each equal to L3

1 , again the difference AF - AC = BH - BI is

equal to a2 : 2b . But FG - CE = HG - IE = (3aa - 2aa√2) : 2b, (from Lemma 2.)
[For AC = CE = EI = b - a2/2b ; x = a√2, and FG - CE =  (FG2 - CE2)/(FG + CE) = (x - a)2/2(b - a2/2b ) ~
(3a2- 2a2√2)/2b].  Hence AFGHB - AB = (4aa - 2aa√2) : b is equal to the distance of descent of the weight
P holding the string. Now, with √z called equal to the velocity of the point F at C, then the velocity of the
point G at E = √2z [as the amplitude is increased over a by a factor of k = √2] ; then the action of the
unbalanced forces of all the small weights taken together is equal to Lz ×3

4 which is equal to the same
quantity for the stretching weight, that is
(4aa - 2aa√2) P : b; thus z =  (6aa - 3aa√2) P: 2bL = (12aa - 6aa√2) P: AB × L, and thus √z ,
or v =  √((12aa - 6aa√2) P: AB × L) and the time to travel through the distance FC, or

ap : 2v = p √AB × L : 2√(12- 6√2) P. Therefore D2
1p  divided by ap : 2v , i. e. ,

:LAB:DP)236(2 ××− √AB × L, gives the number of vibrations of the string in the time of one swing
of the given pendulum D.
[In this case, the speeds of the masses F and H m on the line AB are both equal to ωa, while the speed of
the middle mass G is ωa√2; hence the total maximum kinetic energy on crossing AB is mω2a2 + mω2a2, or
2mω2a2 = (2L/3)ω2a2 , which is equal to the change in the potential energy of the large mass M, which in
turn is (2 - √2) 2Mga2/b = (2 - √2) Pa2/b ; hence the frequency of the motion is

.T and 
)P26(12-

ABL
2quart.ABL

)P26(12-
2L

)P23(2- ×
× === πω b  Again, ,2

D
qpenT π= giving

LAB
PD)236(

)P26(12-
ABL

22 2 // ×
−× == ππ D

quarterqpen TT , as required.]

PROBLEM IV.
Let there be four small weights, each equal to L4

1 , (see Fig. 5). By supposing for the present that GE =
HI = x, with the remaining set up as before, again AF - AC = BK - BM = aa: 2b ;  FG - CE = KH - MI =
(xx - 2ax + aa) : 2b ; thus AFGHKB - AB = (xx - 2ax + 2aa): b b is equal to the distance of descent of the
weight P holding the string. The velocity of the point F at C equal to z , the velocity of the point G at E is
equal to za

x ; and hence the sum of the actions of the unbalanced forces of all the small weights is equal

to Lzaa
xxaa ××+

2 = same quantity for the weight P  = (xx - 2ax + 2aa) P : b hence z =  (2aaxx - 4a2x +4a4)

P: (xx + aa).bL. Whereby √z or v =  a√(2xx - 4ax + 4aa ) P: √(xx + aa). b L; thus the time to pass through
FC =

ap : 2v = p √(aa + xx).bL : 2√(2xx - 4ax +4aa) P. Hence D2
1p  divided by ap : 2v , i.e.,

LPD884 bxx)(aa:aa)axxx( +×+− ,  which is equal to

  L,AB)5(5:PD)5525(2 L)5(5:PD)55(2 ×+×−=+×− b [since by Lemma III,

4
5

2
1 aax += ] gives the number of vibrations of the string in one oscillation of the given pendulum D.

[In this case, the speeds of the masses m, F and K  on the line AB are both equal to ωa, while the speed
of the middle masses G  and H is ωx; hence the total maximum kinetic energy of all the small masses as
they cross AB is mω2a2 + mω2x2, or (L/4)ω2(a2 + x2) , which is equal to the change in the potential energy
of the large mass M, which in turn is (x2 - 2ax + 2a2) Mg/2b = (x2 - 2ax + 2a2) P/4b ; hence the frequency
of the motion is

 .T and 
)P44(2

)x(aL
2quart.)(L

)P4a4ax-(2x
)(L

4
2

)P2a2ax-(x
22

22

22

22

22

22
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b
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+
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+
+ ==×= πω
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Again, ,2
D

qpenT π= giving

 )xLb(a
PD)442(

)P4a4ax-(2x
)x(aL

22 22

22

22

22
2//

+
+−

+
+ == aaxxbD

quarterqpen TT ππ
,

 as required, where  P and L are taken as masses rather than weights. The final result follows by inserting

4
5

2
1 aax += . The corresponding treatments of the last two problems are similar to the above and omitted

for brevity; Bernoulli's treatment is clear in any case.]
PROBLEM V.

Now there are 5 small weights, each of which is equal to L5
1 . By supposing again that GE = KM = x,

with the rest always the same,  HI or y [by Lemma IV] = 2a & x = a√3, & AF - AC = BN - BO = aa: 2b ;
FG - CE = NK - OM =  (xx - 2ax + aa) : 2b = (4aa - 2aa√3) : 2b ; GH - EI = KH - MI = (yy - 2xy + xx) : 2b
= (7aa - 4aa√3) : 2b ; then on account of which AFGHKNB - AB = (12aa - 6aa√3) : b is equal to the
amount of descent of P. Moreover, by taking z for the velocity of the point F at C, the velocity of the
point G at E = z3= ; & the velocity of the point H at I = z2= . As a consequence the sum of all the
action of the unbalanced forces of the small weights is equal to Lz ××5

12 , which is equal to the same

quantity for the stretching  weight P = (12aa - 6a2√3) P : b ;
hence z =  (10aa - 5a2√3) P: 2b×L = (30a2 - 15aa√3) P: AB × L ; & thus
√z or v = a√(30 - 15√3) P: √AB × L, then the time to pass through the length

FC = ap : 2v = p√AB × L: 2√(30 - 15√3) P. Hence D2
1p divided by ap : 2v ,

 i.e.  √(60 - 30√3) D × P : √AB × L gives the number of vibrations of the string for one oscillation of the
given pendulum D.

PROBLEM VI.
Let there be six small weights, each of which is equal to L6

1 . Now by putting GE = NO = x, HI = KM
= y ; AF - AC = BR - BS = a2 : 2b ;  FG - CE = RN - OM =  (xx - 2ax + aa) : 2b; GH - EI = NK - OM = (yy
- 2xy + xx) : 2b ; therefore AFGHKNRB - AB = (2xx - 2ax + 2aa + yy - 2yx) : b is equal to the distance for
the  descending weight P. Indeed by taking z for the velocity of the point F at C, then the velocity of the
point G at E is equal to azx : ; & velocity of the point H in I is equal to azy : ; then the sum of the
actions of the unbalanced forces of all the small weights is equal to (aa + xx + yy) z × L : 3aa , which is
equal to the vi vivae of the stretching weight P = (2xx - 2ax + 2aa + yy - 2yx) P : b ;
& thus √z = √(6aaxx - 6a2x + 6a4 - 3aayy - 6aayx)  P: √(aa + xx +yy)bL = v. Hence the time to pass
through FC = ap : 2v

= ap√(aa + xx +yy)bL : 2√(6aaxx - 6a2x + 6a4 - 3aayy - 6aayx)  P.  Therefore D2
1p  divided by ap : 2v ,

that is √(12aaxx - 12a2x + 12a4 - 6aayy - 12aayx) D × P : a√(aa + xx +yy)bL  =
[from Lemma V, where  y = ax : (-a + x) & y = (xx - aa): a; hence yy = xx + ax ]
√(18aaxx +6a3x + 12a4 - 12ax3) D × P : a√(aa + 2xx + ay)bL
 = √(126axx +42aax + 84a3 - 84x3) D × P : a√(a2 + 2axx + axx) AB×L  =
[from Lemma V, x2 = axx + 2aax - a2 ] √(42axx - 126aax + 168a3) D × P : √(a3 + 2axx +axx)AB×L
 =  √(42xx - 126ax + 168aa) D × P : √(2xx + ax + aa) AB×L
gives the number of vibrations of the string for one oscillation of the given pendulum D. After which, for x
the value can be substituted fuerit, which is the root of this equation x3 - axx - 2aax + a3 = 0.
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Solutions or the same Problems from the principles of Statics.

LEMMA I.

Let g be the natural force of gravity, by which bodies are naturally set in motion, that is, by which they are
urged to fall. Let  x be the altitude through which a body falls, v velocity at the end of the descent,  t the
descent time, M the mass of the weight P; for these M × g = P; gdx : v = dv, and thus √ (2gx) = v.

LEMMA II.

dx : v = dt = dx:√(2gx) ;  hence t = √ 2x : √g.

LEMMA III.
As shown elsewhere, the ratio of the time of descent time through the diameter of some circle is to the

time of a semi- oscillation in the descent along the cycloid of the same height as the circle as

1 : 2
1 π, or 2 : π ; the time for a semi-oscillation of a given pendulum of length  D is g

D
2
π ; for by the

preceding Lemma, the descent time for the diameter of the circle is√ (D/g). [This time is √ (2D/g), which
throws out the previous ratio by a factor of √ 2.]

LEMMA IV.

The point F is pulled towards C by a force which is in proportion to the
distance FC (Fig. 6) ; it is to be shown, that whatever the point F may
be that begins to move, it always takes the same time to pass through
the distance FC. Thus the forces acting on the particle for any distance
= f × FC [ by  f  is to be understood the parameter for that force, in
order that the absolute force taken can be increased or decreased] :
With these put in place, let the distance of FC from the equilibrium
position be taken equal to a, some part of which FO = x,
 f × (a - x) dx /v = dv ; thus v = √ f (2ax - xx) , thus ∫ −

=
)2(

1
xxax

dx
f

t .

Hence the time for the total distance FC is equal to  π /(2√ f).
[The integral can be expressed in the form :

[ ])(sin 11
))((

1
22 a

xa
fxaa

dx
f

t −−−
−−

== ∫  evaluated between 0 and a to

give π /(2√f). As t is independent of the amplitude, then all vibrations have the same period.]

[Note : in what follows, usually the whole expression is included after a √ sign, eliminating the use of
brackets.]

PROBLEM I.
 AF is produced in the second figure & in the following. The force of the weight P is to the force acting

on F towards C, as the sine of the AFC to the sine of the angle VFB, which is equal to the sine of the angle
AFC : to the sine of twice the angle FAC = [since FAC is very small] AC : 2FC = b : 2a, and thus the force
acting on F towards C = (2a : b) P = 2aMg : b [by M is understood the mass of the weight P.] Since truly
the small weight L, from which gravity is now abstracted, is nevertheless to be considered a little mass
acted on by a force towards C, this force is expressed through  f a L, according to 2aMg : b = f a L, from
which f = 2aMg : bL and thus by Lemma IV of this section, the time to pass through  FC or [π: 2√f] = p√bL
: 2√2gM = the short time for a semi-vibration of the string : thus the time for a  semi-oscillation of the
given pendulum D, which [by Lemma III] is equal to  π√D : 2√g, is to be divided by the short time for a
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semi-vibration of the string p√bL : 2√2gM ; from which comes √(2D.M : b.L) = [where the weights are to
be substituted for the masses] √(2D × P : AB × L) gives the number sought of the vibrations of the string,
as was thus determined in the preceding solution by the use of virtual work [i. e. work and energy changes :
note that the first solutions were time independent, while the current ones rely on the time being evaluated
at some point.]

PROBLEM II.
Now P is in the ratio of the force of the point F towards C (Fig. 3) as the sine of the angle AFC to the

sine of the angle VFB or sine of FAC  = b : a, from which the force of the  point F to C  = aMg : b  = f a
× 2

1 L, and thus  f = 2Mg : bL, & the time for the distance FC [p : 2√f] = P√bL : 2√2gM = the short time for

the semi-vibration of the string. The time for the pendulum p√D : 2√g is divided by this time p√bL : 2√2gM
to give  √(2D ×M : b × L) = √(6D × P : AB × L) for the number of vibrations sought.

PROBLEM III.
The force acting on the point F towards C is called ϕ here and in the following ; now  P : ϕ : : S AFC :

S VFG ; [for S is understood to mean the sine of the angle]. Truly from the second Lemma  set out for the
first method, S VFG [since it is very small] =
2a - a√2,  b is taken for the radius : hence ϕ = (2a - a√2) P : = (2a - a√2) Mg : b = f a × 3

1 L,

from which  f = (6 - 3√2) Mg : bL, and the time to pass through  [p : 2√f] = P√bL : (6 - 3√2) Mg  is equal to
the small time for the semi-vibration of the string; thus on dividing p√D : 2√g, by p√bL : (6 - 3√2) Mg,
from which arises √(6 - 3√2) DM : √bL = 2√(6 - 3√2)D × P : √AB × L as before giving the sought number
of vibrations.

PROBLEM IV.
Here again P : ϕ : : S AFC : S VFG ; Moreover from Lemma III from the above method, S VFG [since

it is very small] = 2
1 a - √ 5

4 aa = (3a - a√5) : 2, with b taken for the whole sine :

hence ϕ = (3a - a√5)P : 2b = (3a - a√5) Mg : 2b = f a × 4
1 L, from which  f = (6 - 2√5) Mg : bL ; and the

time to pass through FC [p : 2√f] = p√bL : (6 - 2√5) Mg = short time taken for the semi-vibration of the
string. Hence on dividing p√D : 2√g by p√bL : 2√(6 - 2√5) Mg the result is acquired : √(6 - 2√5) DM  : √bL
= √(30 - 10√5) D × P : √AB × L, which will give the number of vibrations similar to above, for
√(30 - 10√5) D × P : √AB × L = 2√(25 - 5√5) D × P : √(5 + √5) AB × L.

PROBLEM V.
The Figure is to be constructed in the mind. Here we have from the preliminary Lemma IV : S VFG to

be very small  = 2a - a√3; and thus ϕ  = (2a - a√3) P: b = (2a - a√3) Mg : b = f a × 5
1 L, from which

 f = (10 - 5√3) Mg : bL ; and the time to pass through FC [p : 2√f] = p√bL : 2√ (10 - 5√3) Mg is equal to the
short time for the semi-vibration of the string : whereby  p√D : 2√g is divided by this to give
√(10 - 5√3) DM  : √bL  =  √(60 - 30√3) D × P : √AB × L, for the number sought as above.

PROBLEM VI.
From the preliminary Lemma V, here S VFG [on account of being very small]  is equal to 2a - x; where

x is the root of the equation x3 - ax2 - 2ax + a3 = 0, and  ϕ  = (2a - x) P: b = (2a - x) Mg : b = f a × 6
1 L, from

which  f = (12 - 6x) Mg :abL ; & the time to pass through FC [p : 2√f] is equal to p√abL : 2√ (12a - 6x) Mg
= the short time for the semi-vibration of the string; p√D : 2√g is divided by this, from which √(12 - 6x)
DM  : √abL  =  √(84 - 42x) D × P : √a × √AB × L =
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√(42xx - 126ax + 168aa) D × P : √(2xx + ax + aa)AB × L, as multiplication is signified by the cross.

SCHOLIUM.

The theory can be drawn out for any number of  small weights : indeed, let the number of small weights
be n, & for we have ϕ  = (2a - x) Mg: b = f a × n

1 L, from which  f = (2na - ax) Mg :abL ; & the time to pass

through  FC [p : 2√f ] = p√abL : 2√ (2na - nx) Mg = the short time for the semi-vibration of the string.
Hence  p√D : 2√g is to be divided by this to give : √(2na - nx) DM  : √abL  =  √((n + 1)(2aa - nx)) D × P :
√(a × AB × L) = the number of vibrations of the string for one of the given pendulum D. In which
expression is substituted for x the value of that, which should be obtained by adhering to the method used
in the preliminary Lemmas. Thus, e.g., let there be seven small weights, in which case n = 7, & x [by the
preceding Lemma VI] = a√(2 + √2), this gives:
 √((n + 1)(2na + nx)) D × P : (a × AB × L) = 2√(28 - 14√(2 + √2))D × P : √AB × L,
for the number of vibrations sought, which is approximately as 2√2 D × P : √AB × L, just less.

PROBLEM VII.
Now let there be a musical chord AB uniformly thick, the mass or length of which is L, and the tension

from the weight P = Mg ; the number of vibrations for one oscillation of the given pendulum of length D is
sought. [As with P, some times we interpret L as a mass, at others as a length, in order to get the correct
dimensions; in modern terms we use the line density ρ, in which case the time for a quarter - period for the

fundamental note is T
LT ρ
24/1 = , where T is the tension in the chord, and L is the length.

SOLUTION.

A curvilinear shape AEB (Fig. 7) can be assumed for the chord, beyond the straight line position AB,
which it must have, in order that any of its points K arrives at the same time at the corresponding point H
on the straight line AB,  as the middle point E arrives at C : in order that this occurs, the accelerating force
by which a point K is directed towards H, is everywhere in proportion to the distance KH. Hence with two
tangents drawn close together KG, SF [text has GF] ; and from K and S, KH and SI are connected : from
the principles of statics:  the weight P or Mg is in the same ratio to the force by which the small length of
the chord KS is directed towards H, as the sine of the angle KSO, which is taken as a right angle, to the sine
of the angle GKF, [Mg/F = sin(KGF)/sin(GKF) = 1/(FG/KG)] that is, as 1 is to (FG : KG); indeed KF can
be considered as perpendicular to the axis CF, and thus that force [F ]acting on K is :
 FG × Mg : KG = f × KH × dL. & the accelerating force itself  f × KH = FG × Mg : KG × dL. Moreover,
as  FG : KG is to be found, it is noted that the curve AEB belongs to the family of elongated trochoids
[A generisation of the cycloid, where the point tracing out the elongated trochoid lies at a small distance a
from the centre of the cycloid generating circle of radius R  > a, while the circumference of the generating
circle rolls - in this case - through a quarter turn along a line parallel to AB at a distance R below the centre
of the circle. Thus, the parametric equations for the curve, where the origin and axis are as defined below,
are : x = a - acosθ and y = Rθ - asinθ ], i.e., of that kind, as described by the quadrant of the circle EMN,
and with KR drawn parallel to the base AC, shall be AC : KR = EMN: EM, the demonstration of which we
will add below. Now let EC = a, ER = x, EM = s, EMN = 2

1 pa [by always realising that 1 is to p as the
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diameter to the circumference]; also AC : EMN = n : 1,  KR = ns, and the subtangent RG is found to be
equal to s√(2ax - xx) : a,
[We need to use calculus to prove this last result, and to assume that R >>  a. Take E as the origin of co-
ordinates, FR the positive x-axis and a line through E parallel to KR as the y-axis; then the equation of the
trochoid can be expressed parametrically in terms of the angle of rotation θ , which is equal to MRC:
x = a - acosθ ; y = Rθ - asinθ ; then of differenting w.r.t. the time t :

./MR.sin./sinKR~GR hence

;~ hence;.cos;.sin

cos
KRsin

GR
KR

sinsin
cos

r
R assn

rRa n
r

rR
dx
dy

dt
dy

dt
dx

===

==−==

−

−

θθ

θθθθθ

θ
θ

θθ
θ&&&

Note also that MR = √(2ax - xx).]
CG = a - x + s√(2ax - xx): a, and the differential of this, FG =  -dx + (asdx - sxdx) : a√(2ax - xx) + dx =
  (asds - sxdx) : a√(2ax - xx) [a extra dx seems to be added to ease the calculation, as an approximation] and
thus FG: KG, or what is the same FG: KR [= ns] = (a - x)dx : na√(2ax - xx) ; truly the element KS itself ,
which is considered to be equal to KO, [as KR = ns]; i.e. KO = nds  =  nadx  : √(2ax - xx).
[For dx/ds = sinθ = √(2ax - xx)/a, from which ds = adx/√(2ax - xx). ]
Moreover, AB: HI [KO] = L: dL, from which dL = KO × L : AB  = nadx × L:AB√(2ax - xx) ; hence from
which by substitution from above,  the force [F] for the acceleration is obtained :  FG × Mg : KG × dL =
AB × (a - x) × Mg : n2a2 L [since npa = AB, the semi-circumference of the large circle of radius R.]
= pp(a - x)Mg : AB × L = pp × KH × Mg : AB × L = f × KH ;  and thus f = pp × Mg : AB × L , and the
time to pass through the distance KH [p : 2√f , from previously] = √ AB × L : 2 √ Mg = short time for the
semi-vibration of the musical chord; [In modern terms, the frequency of the note for a string of length L

and under a tension T, is given by T
LT ρ
24/1 = , in which case the line density of the chord is 1.]

thus on dividing p√D : 2√g  for the pendulum
by √ AB × L: 2 √ Mg,  then  p√DM : √ AB × L =  p√ D × P : √ AB × L is obtained;  the number of
vibrations of the chord for the duration of one oscillation of the pendulum of given length D; as TAYLOR
found. See Meth. Increm. p. 93.  In the same way, I  have found the solution from the principle of the action
of the unbalanced forces, as follows:

Let (Fig. 8) DN = x; NG = ;))2(:(∫ −= xxaxadxny

[This follows from the previous method, as in Fig. 7, KO = nds  = dy =  nadx  : √(2ax - xx)] ;

DG = s; DC = a.  Also, ds - dy = (ds2 - dy2):  (ds + dy) = dx2 : 2dy =
[on account of ;))2(:(∫ −= xxaxadxny  and dy/dx << 1; ]

dx2 : ;2:)2(
)2(

2 naxxaxdx
xxax

nadx −=
−

and thus the extension is the arc length DA - the half chord

length CA =  CD2:DEFCD)2:))2(()2:( 2
12 nnaxxaxdxdydx ×=−= ∫∫ .

[The integral has the value a2π/4 = CD × arc DEF/2, which is evaluated by elementary means by putting a -
x = acosθ .]
Hence DA - CA = 4

1 DEF : n = DEF : 4n = AC: 4n2 = AB : 8n2; hence 2DA - 2CA = arc ADB - AB
= AB : 4n2 = the difference in length between the arc and the chord.
The radius of curvature at G, for the element position Gg or with constant ds, is generally dsdy : ddx = [for
curves with maximum elongation where dy = ds; these are Bernoulli's brackets] dy2: ddx. Hence in the
case of the Troichoid family with the maximum elongation,
where dy = ds = nadx : √(2ax - xx) = constant [R; on taking the next derivative] :

[for 02/32

2

2 )2(
)((

)2(
=−=

−
−

− xax
dxxana

xax
naddxddy ; hence 0)2( 2/12

2

)2(
)((2 =−−

−
−
xax

dxxanaxaxnaddx ; now we call the second

derivative d2y/dx2]
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P

δθ

θ

P

dx

ds ~ dy

tan θ = dx/dy

Oy

x

ddx

Force triangle for the element ds.

Difference of the gradients across the element ds.

 dy

naddx √(2ax - xx) - (na2dx2 - naxdx2) : √(2ax - xx)  = 0, hence )2(:)( 2 xxaxdxxaddx −−= ; and thus the

radius of the osculating dy2: ddx = xa
nnaa

xxax
dxxa

xxax
nnaadx

−−
−

− =)2(
)(

2

22
: , i.e. the radius of the osculating circle varies

inversely as GH. [We give this calculation in a modern setting, i.e.  the axes are rotated for the present
through 900: the curvature or the inverse of the radius κ of the osculating circle for a plane curve y(x) is
given by 1/κ = (d2y/dx2 )/(1 + (dy/dx)2)3/2; in the present case,

 term.]2nd in the retained is   termonly the  where,~ : hence

;)(1 and ;;

22
)2(

)2(
)2(

)(1

2
22

)2(
)(

)2(

222/3222

2/32

2/32

2

222

2/322

2

2

an
an
xa

xaxan
xax

xax
xana

xax
xanax

dx
dy

xax
xana

dx
yd

xax
nadx

dx
dy

−
−+

−
−

−−

−
−+

−
−−

−

×=

=+==

κ

Now the hanging weight stretching the chord is P ; the weight of the chord AB itself is L; the velocity of
the point D when it arrives at C due to the vibration is equal to √ S [the distance S is to be understood as the
distance through which a weight falls freely from rest to reach the velocity of the point D at C] : the
velocity of any point G at H will be equal to GH √S : DC = (a - x)√S : a, and thus
[Before proceeding, we note that Bernoulli has set 2g = 1, as a comparison is to be made with a pendulum
treated in the same manner; hence, v2 = 2gS or v = √S; thus the velocity of any other point G on crossing
the line AB at H is proportional to the amplitude GK of the vibration at that point : thus, vH = (GH/DC)√S;
in addition a term in proportion to the kinetic energy mv2, which Bernoulli calls the 'moving force' where m
is the mass of the small element Hh, is given by the first term that follows. We note also from above that
Hh  = dy =  nds  =  nadx/ √(2ax - xx).]

)2(.AB
L.)(

AB
L.)(

AB
Hh)( SSLS

222

xxaxx
ndx

a
xady

aa
xa

aa
xa

−
−−− ××=××=×× , which is equal to the 'moving force' of

the small part of the chord Gg or Hh in H = ;
2

)(
.

. 2

xxax
dxxa

ABa
LnS

−
−× this becomes on integration for the whole

chord :  [Note that dxxxaxdxa
xax

dxxa ∫∫ −−=
−

− })2({)(
2

2

2

)(  ]

=−+−−× ∫× ))2()2()((. xxaxdxxxaxxaABa
LnS

=×==××× SLDEF 2
1

AB
S.L.DEF

2
1

AB.
S.L2 n

a
n a the amount of the action of the unbalanced forces for the whole

chord [as n.DEF = AB/2]. Moreover, this is equal to the amount of the action of the unbalanced forces [or
work done]of the descending weight P by (AB : 4n2)= P.AB : 4n2   
[As shown above for the difference of ADF and AB].
Hence,  S = P.AB : 2n2 × L = 2P.DEF2 : L × AB & √ S = DEF × √(2P : L.AB) [On substituting for n2.].
Hence the time is found for the string to pass from D to C to be equal to √(L.AB:2P) [our formula v = aω].
But the time of the semi-oscillation of the simple pendulum the length of which is C = DEF × √2C: DC;
 therefore in order that these two times are equal, it is required that
√(L.AB:2P)  = DEF × √2C: DC ; thus C = DC2.AB.L : 4DEF2.P. Hence the number of vibrations of the
chord in the time for one vibration of the pendulum of given length D is equal to :
 2DEF×√(D × P): DC × √(AB.L), = [by supposition 2DEF: DC = p ]  p√(D.P : AB.L) as TAYLOR has, for
whom L & N are what AB & L are for me.

It follows from this demonstration, as was asserted above, that the figure of an elongated trochoid is
established in a vibrating chord ADB [see the preceding figure].

It has been shown above, that the sine of the contact angle
in some point of the chord G is proportional to the length to
be traversed GH. Now with the same symbols retained,
which we used above, the sine of the contact angle is equal to
ddx : ds = [on account of the figure with the maximum
elongation, and consequently, ds = dy ] ddx : dy, with dy kept
constant of course : moreover, the length to be traversed GH
= a - x. Hence (ddx : dy) to a - x is in a constant ratio. This
ratio is as dy to nnaa;
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[For from the radius of curvature calculation, we have seen, on reverting to the original axes as defined in

the text : 
.]

hence  , :~

22

222

2 1

an
dy

a-x
ddx

an
xa

dy
ddx

dy
xd

=

== −
κ

and
 nnaaddx : dy = ady - xdy; [or divided by dy] nnaaddx : dy2 = a - x. The other member is to be multiplied
by dx, & nnaadxddx : dy2 = adx - xdx is obtained; and with integration performed :
nnaadx2 : 2dy2 = ax - 2

1 xx, or nnaadx2 = (2ax - xx)dy2 hence nadx : √(2ax - xx) = dy,

& .))2(:( yxxaxadxn =−∫  Thus  y [NG] : ;1:]DE arc the[))2(:( nxxaxadx =−∫ , that is, with the line
NG attached to the arc DE in a constant ratio, and one that is very large. The ratio AC to CD is indeed very
large by hypothesis]. Hence the ratio AC to the quarter of DEF is also very large. But AC : DEF = n : 1. [as
demonstrated.] Whereby the proposition is agreed upon.
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A

A

NO. CXL.
JOHANNIS BERNOULLI

MEDITATIONES

DE CHORDIS VIBRANTIBUS,

cum pondusculis aequali intervallo a se invicem dissitis,
Ubi nimirum ex principio virium vivarum quaeritur numerus vibrationum
chorda pro una oscillatione Penduli data longitudinis D(see p.125, 126).

Chorda vibrans ACDEF
&c., cui ad distantias
aequals affixa sunt
ponduscula aequalia, C, D,
E, F, &c. in eam se
componere debet figuram,
ut singula ponduscula simul
perveniant in situm
rectilineum AB : unde
sequitur, singulorum
velocitates, adeoque & vires
acceleratrices,
proportionales esse debere
longitudinibus percurrendis
Cc, Dd, Ee, &c. Sed per principia statica, tensio chordae est ad vim qua ponusculum quodvis, exempli
gratia, E, urgetur versus e, ut sinus anguli DEe ad sinum anguli DEF, vel IEF, id est, [ob figurum chordae
fere rectam, & pondusculorum intervalla aequalia] ut sinus totus ad FI. Ergo, ex aequo, distantiae Cc, Dd,
Ee, &c. proportionales sunt ipsis DG, EH, FI, &c. respective. Jam DG = Gd - Dd = 2Cc - Dd = 2a - x; HE =
He - Ee = 2Dd - Cc - Ee = 2x - a - y ; FI = If - Ff = 2Ee - Dd - Ff = 2y - x - z ; & unde 2a - x : a = 2x - a - y
: x = 2y - x - z : y = 2z - y - t : z = &c. Hinc sequentia fluunt Lemmata.
I. Si duo sint ponduscula, erit x = a, y =  0, reliqua non considerantur.
II. Si tria sint ponduscula, erit y = a, z = 0, reliquis non consideratis; adeoque 2a - x : a = 2x - 2a : x, unde
2ax - xx = 2ax - 2aa & x =
a√2.
III. Sint quatuor sint
ponduscula, erit y = x, z = a,
& t = 0, non consideratis
reliquis ; adeoque
 2a - x : a =x - a : x ; unde 2ax
- xx = ax - aa &

.4
5

2
1 aaax +=

IV. Sint quinque  ponduscula, erit z = x, t = a, u = 0, reliquis negectis ; adeoque 2a - x : a = 2x - a - y : x =
2y - 2x : y ; hinc duae aequationes habentur, xx = aa + ay, & yx = 2ax. Ex priori aequatione est y = (xx - aa)
: a ; ex posteroiri, y = 2a ; unde x = a√3.

V. Si sex sint ponduscula, erit z = y, t = x,  u = a, s = 0, reliquis neglectis ; adeoque 2a - x : a = 2x - a -
y : x = y - x : y. Hinc duae aequationes, xx = aa + ay, & ay - yx = -ax. Ex posteriori aequatione
y = ax :(- a + x); ex altera y = (xx - aa) : a ; unde aax = x3 - axx - aax + a3, seu x3 - axx - 2aax  + a3 = 0.

VI. Si septem sint ponduscula, erit t = y, u = x, s = a, w = 0, non attento ad reliqua. Adeoque 2a - x : a
= 2x - a - y : x = 2y - x - z : y = 2z - 2y : z; & ita tres habentur aequationes  xx = aa + ay, xy = ax + az & xz
= 2ay. Ex aequatione secunda z = (xy - ax) : a, ex tertia z = 2ay : x ; unde y = axx : (x2 - 2a2) : a;
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 igitur (x2 - a2) : a = ax2 : (x2 - 2a2) unde aaxx = x4 - 3aaxx + 2a4 ; seu x4 - 4aaxx + 2a4 = 0 ; adeoque xx =
2aa + aa√2, & x = a√(2 ± √2) ; y = a ± a√2 ; z = (2a ± 2a√2) : √(2 + √2) = + 4√(4 + 2√2). Ubi notandum
signa inferiora huc non quadrare.

PROBLEMA I.
Sit nunc chorda vel filum ALB omnis crassitiei expers oneratum in medio pondusculo L ; sitque filum
tensum a pondere P ; quaeritur tempus semivibrationis per LC. Esto LC = a, AL vel AC = b, erit AL - AC =
(AL2 - AC2) : (AL + AC) = LC2 : 2AC = a2 : 2b, & ALB - AB = a2 : b = descensui ponderis P filum
tendentis. Sit z = altitudini verticali per quam grave libere descendens acquirit velocitatem aequale illi
quam habet punctum L quando pervenit in C, quae velocitas adeo erit = √z. Erit vis viva pondiusculi L = Lz
= vi vivae ponderis tendentis = (a2 : b) ×  P ; unde .:2 LbPaz ××=  Quia vero vis trahens punctum versus
C semper est proportionalis distantiae LC; erit supponendo diametrum circuli ad ejus circumferentiam ut 1
ad p, & v velocitatem puncti L in C, tempus per LC seu tempus semivibrationis
= ap : 2v = ap : 2√z = p√b.L : 2√P, & tempus unius semioscillationis penduli datae longitudinis D, =

.D2
1p  Ergo .D2

1p  divisum per p√b.L : 2√P, hoc est, √2P.D : √b. L, dabit numerum vibrationum fili

durante una oscillatione penduli .)AB.L:D.P(2.L.AB:D.P4D ==

PROBLEMA II.
Sit nunc filum AFGB tensum a pondere P, & oneratum duobus pondusculis aequalibus (Fig. 3), quorum
unumquodque = L2

1 , & quae dividant filum in tres partes aequales, AF, FG, GB. Sit iterum FC = GE = BE

= a2 : 2b ; adeoque AFGB - AB = a2 : b = descensui ponderis P. Sit iterum √z = ve. locitati puncti F in C,
vel puncti G in E ; erunt vires vivae pondusculorum F & G simul = Lz = vi vivae ponderis tendentis
P = (aa : b) × P, unde z = a2.P : b.L . Reliqua ergo jam ponendum sit pro numero vibrationum

).:.6().:.2().:.2( 3
1 LABPDLABPDLbPD == .

PROBLEMA III.
Sit jam tria ponduscula (Fig. 4)  = L3

1 , erit rursus AF - TAB ?  AC = BH - BI = a2 : 2b . Sed FG - CE =

HG - IE = (ex. Lemm. 2.) (3aa - 2aa√2) : 2b.  Hinc AFGHB - AB = (4aa - 2aa√2) : b = descensui ponderis
P. filum tententis. Erit nunc, vocata √z = velocitate puncti F in C, velocitas puncti G in E = √2z ; unde
quantitas virium vivarum omnium pondusculorum simul = Lz ×3

4 = vivae ponderis tendentis

 = (4aa - 2aa√2) P : b , adeoque z =  (6aa - 3aa√2) P: 2bL = (12aa - 6aa√2) P: AB × L, & sic √z ,
vel v =  √((12aa - 6aa√2) P: AB × L) & tempus per FC, seu

ap : 2v = p √AB × L : 2√(12- 6√2) P. Igitur D2
1p  divisum per ap : 2v , hoc est,

,LAB:DP)236(2 ××−  dabit numerum vibrationum fili in una oscillatione penduli dati D.

PROBLEMA IV.
Sint ponduscula quatuor , singula (Fig. 5)  = L4

1 . Supponendo tandisper GE = HI = x, reliquis ut prius
manentibus, erit iterum AF - AC = BK - BM = aa: 2b ;  FG - CE = KH - MI =  (xx - 2ax + aa) : 2b ; unde
AFGHKB - AB = (xx - 2ax + 2aa): b = descensui ponderis P. vocetur velocitas  puncti F in C  z= ,
velocitas puncti G in E = za

x= ; ac proinde summa virium vivarum omnium pondusculorum  =

Lzaa
xxaa ××+

2 = vi vivae ponderis  = (xx - 2ax + 2aa) P : b ; igitur z =  (2aaxx - 4a2x +4a4) P: (xx + aa).bL

Quare √z vel v =  a√(2xx - 4ax + 4aa ) P: √(xx + aa). b L; itaque tempus per FC =

ap : 2v = p √(aa + xx).bL : 2√(2xx - 4ax +4aa) P. Ideoque  D2
1p  divisum per ap : 2v , hoc est,

Lxx)(aa:PD)884( baaaxxx +×+− = [quia per Lemma III, 4
5

2
1 aax += ]
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 LAB)5(5:PD)5525(2 L)5(5:PD)55(2 ×+×−=+×− b ,

dabit numerum vibrationum fili in una oscillatione penduli dati D.

PROBLEMA V.
Sint jam quinque ponduscula, quorum unumquoque  = L5

1 . Supponendo iterum GE = KM = x, reliquis

semper manentibus, erit HI seu y [per Lemma IV] = 2a & x = a√3, & AF - AC = BN - BO = aa: 2b ;  FG -
CE = NK - OM =  (xx - 2ax + aa) : 2b = (4aa - 2aa√3) : 2b ; GH - EI = KH - MI = (yy - 2xy + xx) : 2b  =
(7aa - 4aa√3) : 2b ; quocirca unde AFGHKNB - AB = (12aa - 6aa√3) : b = descensui ponderis P. Est
autem, sumta z pro velocite puncti F in C  , velocitas puncti G in E = z3= ; & velocitas puncti H in I =

z2= . Per consequens aggregatum virium vivarum omnium pondusculorum  = Lz ××5
12 = vi vivae

tendentis ponderis P = (12aa - 6a2√3) P : b ;
proinde z =  (10aa - 5a2√3) P: 2b×L = (30a2 - 15aa√3) P: AB × L ;
& ita √z vel v = a√(30 - 15√3) P: √AB × L, unde tempus per FC = ap : 2v = p√AB × L:

2√(30 - 15√3) P. Ideoque  D2
1p divisum per ap : 2v , hoc est √(60 - 30√3) D × P : √AB × L

dabit numerum vibrationum fili in una oscillatione penduli dati D.

PROBLEMA VI.
Sunto ponduscula sex, quorum singula  = L6

1 . Positis nunc GE = NO = x, HI = KM = y ; erit AF - AC
= BR - BS = a2 : 2b ;  FG - CE = RN - OM =  (xx - 2ax + aa) : 2b; GH - EI = NK - OM = (yy - 2xy + xx) :
2b ; propterea AFGHKNRB - AB = (2xx - 2ax + 2aa + yy - 2yx) : b = descensui ponderis P. Est vero sumta

z pro velocite puncti F in C  , velocitas puncti G in E azx := ; & velocitas puncti H in I azy := ;
unde summa virium vivarum omnium pondusculorum  = (aa + xx + yy) z × L : 3aa = vi vivae tendentis
ponderis P = (2xx - 2ax + 2aa + yy - 2yx) P : b ;
& ideo √z = √(6aaxx - 6a2x + 6a4 - 3aayy - 6aayx)  P: √(aa + xx +yy)bL = v. Hinc tempus per FC = ap : 2v

= ap√(aa + xx +yy)bL : 2√(6aaxx - 6a2x + 6a4 - 3aayy - 6aayx)  P.  Idcirco D2
1p  divisum per ap : 2v ,

hoc est √(12aaxx - 12a2x + 12a4 - 6aayy - 12aayx) D × P : a√(aa + xx +yy)bL  = [ob Lemma V, ubi y = ax :
(-a + x) & y = (xx - aa): a;
indeque yy = xx + ax ] √(18aaxx +6a3x + 12a4 - 12ax3) D × P : a√(aa + 2xx + ay)bL
 = √(126axx +42aax + 84a3 - 84x3) D × P : a√(a2 + 2axx + axx) AB×L  =
[ob Lemma V, x2 = axx + 2aax - a2 ] √(42axx - 126aax + 168a3) D × P : √(a3 + 2axx +axx)AB×L
 =  √(42xx - 126ax + 168aa) D × P : √(2xx + ax + aa) AB×L dabit numerum vibrationum fili in una
oscillatione penduli dati D. postquam pro x substitutus fuerit ejus valor, qui est radix hujus aequationis
x3 - axx - 2aax + a3 = 0.

Solutiones eorundem Problematum ex principiis Staticis.

LEMMA I.

Sit vis gravitas naturalis g, qua corpora naturaliter animantur, hoc est, ad descensum urgentur. Sit x altitudo
per quam descendit, v velocitas in fine descenscus, t tempus descensus, M massa ponderis P; erit M × g = P;
gdx : v = dv, adeoque √ 2gx = v.

LEMMA II.

dx : v = dt = dx:√2gx ;  adeoque t = √ 2x : √g.
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LEMMA III.
Quia alibi demonstratum, tempus descensus naturalis per diametrum alicuis circuli ad tempus

semioscillationis in cycloide de aeque altae cum circulo ut 1 : 2
1 p = 2 : p ; erit tempus semi-oscillationis

penduli datae longitudinis D, p√ D : 2√g ; est enim per Lemma praecends, tempus descendus per
diametrum = √ D : √g.

LEMMA IV.

Tendat punctum F ad C, viribus quae sunt proportionales distantiis FC ;
demonstratum est, undecunque punctum F incipiat moveri, aequalibus
semper temporibus percurrere distantum FC. Sit itaque vis qua in
qualibet distantia urgentur = f × FC [per f intelligo parametrum illius
vis, ut vis absolute sumta augeri & minui possit] : His positis, sit
distantia FC a puncto quietis sumta = a, pars quaelibet FO = x, erit f ×
(a - x) dx : v = dv ; adeoque v = √ f (2ax - xx) , atque

∫ −
=

)2(
1

xxax
dx

f
t . Ergo tempus per totam FC, = p : 2√ f.

PROBLEMA I.
Producatur AF in secunda figura & sequentibus. Vis ponderis P est ad vim qua punctum F versus C

urgetur, ut sinus anguli AFC ad sinum ang. VFB = sin. ang. AFC : sin, dupli ang. FAC = [quia FAC pro
infinite parvo habetur] AC : 2FC = b : 2a, adeoque vis qua punctum F versus C urgetur = (2a : b) P = 2aMg
: b [intelligo per M massam ponderis P.] Quia vero pondusculum L, a cuius gravitate nunc abstrahitur,
considerando tantum ejus massulam, urgeri debet ad C, vi quae exprimitur per f a L, erit 2aMg : b = f a L,
unde f = 2aMg : bL adeoque per Lemma IV huius, erit tempus per FC [p : 2√f] = p√bL : 2√2gM =
tempusculo semivibrationis fili : dividendo itaque tempus semioscillationis penduli data D, quod [per
Lemma III] = p√D : 2√g, per tempusculum semivibrationis fili p√bL : 2√2gM ; quod provenit
√(2D.M : b.L) = [substituendo pro massis pondera] √(2D × P : AB × L) dabit numerum quaesitum
vibrationum fili, prorsus ut in solutione praecedente per vires vivas eruta.

PROBLEMA II.
Nunc est P ad vim puncti F versus C ut sinus anguli AFC ad sinum VFB seu sin.FAC  = b : a, unde vis

puncti F ad C  = aMg : b  = f a × 2
1 L, adeoque f = 2Mg : bL, & tempus per FC [p : 2√f] = P√bL : 2√2gM =

tempusculo semivibrationis fili. Divisum itaque tempus  p√D : 2√g, per p√bL : 2√2gM ; dabit
√(2D ×M : b × L) = √(6D × P : AB × L) pro numero vibrationum quaesto.

PROBLEMA III.
Vocetur hic & in sequentibus ϕ vis puncti Fversus C ; erit jam P : ϕ : : S AFC : S VFG ; [per S intelligo

sinum anguli]. Ex vero ex Lemmate secundo priori methodo praemisso, S VFG [quia infinite parvus] =
2a - a√2, sumto b pro radio : hinc ϕ = (2a - a√2) P : = (2a - a√2) Mg : b = f a × 3

1 L,

unde f = (6 - 3√2) Mg : bL, tempusque per FC [p : 2√f] = P√bL : (6 - 3√2) Mg = tempusculo
semivibrationis fili; adeoque dividendo p√D : 2√g, per p√bL : (6 - 3√2) Mg, quod orietur
√(6 - 3√2) DM : √bL = 2√(6 - 3√2)D × P : √AB × L dabit quaesitum numerum, ut ante.



JOHANNE BERNOULLI on Vibrating Strings (Opera Omnia, Lib. IIIpp.198 - 210.)         16
Translated and annotated by Ian Bruce.

PROBLEMA IV.
Hic iterum P : ϕ : : S AFC : S VFG ; Est autem, ex Lemmate III pro superiori methodo, S VFG [quia

infinite parvus] = 2
1 a - √ 5

4 aa = (3a - a√5) : 2, sumto b pro sinu toto :

hinc ϕ = (3a - a√5)P : 2b = (3a - a√5) Mg : 2b = f a × 4
1 L, ex quo  f = (6 - 2√5) Mg : bL ; ac tempus per FC

[p : 2√f] = p√bL : (6 - 2√5) Mg = tempusculo semivibrationis fili. Hinc dividendo p√D : 2√g per p√bL :
2√(6 - 2√5) Mg acquiritur √(6 - 2√5) DM  : √bL = √(30 - 10√5) D × P : √AB × L, quod dabit numerum
vibrationum conformem superiori, nam
√(30 - 10√5) D × P : √AB × L = 2√(25 - 5√5) D × P : √(5 + √5) AB × L.

PROBLEMA V.
Figura in mente concipienda est. Hic habemus ex Lemmate IV praeliminari, S VFG infinite parvum  =

2a - a√3; adeoque ϕ  = (2a - a√3) P: b = (2a - a√3) Mg : b = f a × 5
1 L, unde  f = (10 - 5√3) Mg : bL ; ac

tempus per FC [p : 2√f] = p√bL : 2√ (10 - 5√3) Mg = tempusculo semivibrationis fili : quare dividendo p√D
: 2√g per hoc, prodit √(10 - 5√3) DM  : √bL  =  √(60 - 30√3) D × P : √AB × L, pro numerum quaesito ; ut
supra.

PROBLEMA VI.
Ex Lemmate V praeliminari, hic erit S VFG [ob infinite parvum]  = 2a - x; ubi x est radix hujus

aequationis x3 - ax2 - 2ax + a3 = 0, erit  ϕ  = (2a - x) P: b = (2a - x) Mg : b = f a × 6
1 L, unde  f = (12 - 6x)

Mg :abL ; & tempus per FC [p : 2√f] = p√abL : 2√ (12a - 6x) Mg = tempusculo semivibrationis fili.
Dividendo p√D : 2√g per hoc, oritur √(12 - 6x) DM  : √abL  =  √(84 - 42x) D × P : √a × √AB × L =
√(42xx - 126ax + 168aa) D × P : √(2xx + ax + aa)AB × L, ut multiplicandi per crucem patebit.

SCHOLIUM.

Res generaliter tractari potest pro quocunque numero pondusculorum : sit enim numerus
pondusculorum  n, & habitur erit  ϕ  = (2a - x) Mg: b = f a × n

1 L, unde  f = (2na - ax) Mg :abL ; & tempus

per FC [p : 2√f ] = p√abL : 2√ (2na - nx) Mg = tempusculo semivibrationis fili.  Ergo dividendo p√D : 2√g
per hoc, prodibit √(2na - nx) DM  : √abL  =  √((n + 1)(2aa - nx)) D × P : √(a × AB × L) = numero qui
quaeritur vibrationum fili oscillante semel pendulo dato D. In qua expressione pro x substituendus est ejus
valor, qui quaeri debet per methodum in Lemmatibus praeliminaribus adhibitam. Sic, exempli gratia, se
septem sint ponduscula, in quo casu n = 7, & x [per Lemma praeliminare VI] = a√(2 + √2), erit √((n +
1)(2na + nx)) D × P : (a × AB × L) = 2√(28 - 14√(2 + √2))D × P : √AB × L, numero quaesito vibrationum,
qui quam proxime accidit ad 2√2 D × P : √AB × L justo minorem.

PROBLEMA VII.
Esto nunc chorda musica AB uniformiter crassa, cujus quantitas materiae = L, eaque tensa a pondere P

= Mg. quaeritur numerus vibrationum in una oscillatione penduli dati D.
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SOLUTIO.

Induat chorda, extra situm rectilineum AB figuram curvilimeam AEB, quae ea esse debet, ut quodlibet
ejus  punctum K eodem tempusculo perveniat ad punctum correspondens H in situ rectilinea, quo punctum
medium E pervenit ad C : id quod facit, ut vis acceleratrix, qua punctum K versus H urgetur, ubique sit
proportionalis distantiae KH. Ductis ergo duabus tangentibus proximis KG, GF; & ex K & S applicatis,
KH, SI : erit ex principio statico pondus P seu Mg, ad vim qua particula chordae KS versus H urgetur, ut
sinus anguli KSO, qui pro recto habetur, ad sinum ang. GKF, hoc est, ut 1 ad FG : KG; potest enim KF
considerari tanquam perpendicularis ad axem CF. erit itaque vis illa in K = FG × Mg : KG = f × KH × dl. &
inde vis ipsa acceleratrix seu f × KH = FG × Mg : KG × dl.. Ut autem determinetur FG : KG, notandum est,
curvam AEB esse trochiodis sociam elongatam, hoc est, ejus naturae, ut descripto quadrante circuli EMN,
& ducta KR parallela basi AC, sit AC : KR = EMN: EM, cujus demonstrationem infra adjeciemus. Sit nunc
EC = a, ER = x, EM = s, EMN = 2

1 pa [intelligo semper 1 as p ut diametrum ad circumferentiam]; sit etiam

AC : EMN = n : 1, erit KR = ns, &  reperiatur subtangens RG = s√(2ax - xx) : a,
CG = a - x + s√(2ax - xx): a, ejusque differentialis FG =  -dx + (asdx - sxdx) : a√(2ax - xx) + dx =
  (asds - sxdx) : a√(2ax - xx) adeoque FG: KG, vel quod idem est FG: KR = (adx - xdx) : na√(2ax - xx) ;
ipsum vero elementum KS, quod censetur aequale ipsi KO, =  nds  =  nadx  : a√(2ax - xx). Est autem AB:
HI [KO] = L: dL, unde dL = KO × L : AB × = nadx × L.AB√(2ax - xx) ; quibus ergo substitutis in vi
acceleratrice habetur FG × Mg : KG × dL =
AB × (a - x) × Mg: n2a2 L [quia npa = AB] pp(a - x)Mg : AB × L = pp × KH × Mg : AB × L = f × KH ;
adeoque f = pp × Mg : AB × L , & tempus per KH [p : 2√f] = √ AB × L : 2 √ Mg = tempusculo
semivibrationis chordae musicae; diviso itaque p√D : 2√g per √ AB × L : 2 √ Mg
acquiritur p√DM : √ AB × L =  p√ D × P : √ AB × L ; numerus vibrationum chordae durante una
oscillatione penduli datae longitundinis D; quemadmodum invenit TAYLORUS. Vid. Meth. Increm. p. 93. Ex
sicuti ego quoque inveni ex principio virium vivarum, ut sequitur:

Sit (Fig. 8) DN = x; NG = ;))2(:(∫ −= xxaxadxny  DG = s; DC = a.

Est ds - dy = (ds2 - dy2):  (ds + dy) = dx2 : 2dy = [ob y = ;))2(:(∫ −= xxaxadxny  ] dx2 :

;2:)2(
)2(

2 axxaxdx
xxax

adx ππ −=
−

adeoque DA - CA =

CD2:DEFCD)2:))2(()2:2( 2
1 π×=−= ∫∫ naxxaxdxdydx = 4

1 DEF : n =
DEF : 4n = AC2: 4n2 = AB : 8n2; hinc 2DA - 2CA = ADB - AB = AB : 4n2 = differentiae inter arcum &
chordam. Radius osculi in G, posito elemento Gg vel ds constante, est generaliter dsdy : ddx = [in curvis
maxime elongatis ubi dy = ds] dy2:ddx. Ergo in hoc casu Troichoidis sociae maxime elongatae, ubi dy = ds
= nadx : √(2ax - xx), erit naddx √(2ax - xx) - (na2dx2 - naxdx2) : √(2ax - xx)  = 0, unde

)2(:)( 2 xxaxdxxaddx −−= ; adeoque radius osculi

dy2: ddx = xa
nnaa

xxax
dxxa

xxax
nnaadx

−−
−

− =)2(
)(

2

22
: , hoc est, radii osculi sunt reciproce ut GH. Sit nunce pondus tendus

tendens chordam, P ; pondus ipsius AB, L; velocitas puncti D cum vibrando venerit in C = √ S [intelligendo
per S spatium per quod grave libere descendens acquirit velocitatem puncti D in C] : erit puncti cujuslibet
G in H velocitas = GH √S : DC = (a - x)√S : a, adeoque
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)2(.AB
L.)(

AB
L.)(

AB
Hh)( SSLS

222

xxaxx
ndx

a
xady

aa
xa

aa
xa

−
−−− ××=××=×× = vi vivae particulae chordae Gg vel Hh in

H = ;
2

)(
.

. 2

xxax
dxxa

ABa
LnS

−
−× id quod integrando habetur

=−+−−× ∫× ))2()2()((. xxaxdxxxaxxaABa
LnS [pro tota chorda]

=×==××× SLDEF 2
1

AB
S.L.DEF

2
1

AB.
S.L2 n

a
n a quantitati virium vivarium totius chordae. Haec autem est

aequalis vi vivae ponderis P descendentis per AB : an2 = P.AB : 4n2. Ergo
 S = P.AB : 2n2 × L = 2P.DEF2 : L × AB & √ S = DEF × √(2P : L.AB). Hince invenitur tempus per DC =
√(L.AB:2P). Est autem tempus semioscillationis penduli simplicis cujus longitudino sit
C = DEF × √2C: DC; ut igitur haec duo tempora sint aequalia, faciendum est
√(L.AB:2P)  = DEF × √2C: DC ; unde C = DC2.AB.L : 4DEF2.P. Ergo numerus vibrationum chordae in
tempore unius vibrationis penduli datae longitudinis D = 2DEF×√(D × P): DC × √(AB.L), = [supposito
2DEF: DC = p ] p√(D.P : AB.L) ut habet TAYLORUS, cui L & N sunt quod mihi AB & L.

Sequitur demonstratio ejus, quod supra asseritur, chordam vibrantem ADB [vid. fig. praeced.] induere
figuram sociae Trochiodis elongatae.

Ostensum est in superioribus, sinum anguli contactus in puncto chordae quocuncue G proportionalem
esse longitudini per currendae GH. Jam retentis iisdem symbolis, quibus supra usi sumus, erit sinus anguli
contactus = ddx : ds = [ob figuram maxime elongatam & consequenter ds = dy ] ddx : dy, positis nimirum
dy constantibus : longitudino autem percurrenda GH = a - x. Ergo ddx : dy ad a - x in ratio constante. Sit
illla ratio ut dy ad nnaa; eritque nnaaddx : dy = ady - xdy; [seu divid. per dy] nnaaddx : dy2 = a - x.
Multiplicetur utrumque membrum per dx, & habebitur nnaadxddx : dy2 = adx - xdx; sumtisque integralibus
nnaadx2 : 2dy = ax - 2

1 xx, seu nnaadx2 = (2ax - xx)dy2 unde nadx : √(2ax - xx) = dy,

& .))2(:( yxxaxadxn =−∫  Est itaque y [NG] ; 2
11:]DE arc.[))2(:( nxxaxadx =−∫ , id est, applicata

NG ad arcum DE in ratione constante, eaque valde magna. Est enim ratio AC ad CD valde magna [per
hyp.]. Ergo etiam ratio AC ad quadrantem DEF valde magna erit. Sed AC : DEF = n : 1. [per demonstr.]
Quare constat propositum.


